Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-22T04:08:17.889Z Has data issue: false hasContentIssue false

Formation of an Interstratified Mineral by Extraction of Potassium from Mica with Sodium Tetraphenylboron

Published online by Cambridge University Press:  01 July 2024

Katsutoshi Tomita
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, Kagoshima, Japan
Mitsuhiko Dozono
Affiliation:
Institute of Earth Sciences, Faculty of Science, Kagoshima University, Kagoshima, Japan

Abstract

Interlayer K was extracted with sodium tetraphenylboron solution from a powdered sericite heated to the temperature of dehydroxylation and quenched to room temperature. By this procedure, sericite of the 2M1 type was changed to an interstratified mineral. The X-ray diffraction properties of this interstratified mineral are similar to “rectorite”.

Résumé

Résumé

Le potassium interfeuillet a été extrait, par une solution de tétraphénylborate de sodium, d’une séricite en poudre chauffée à la température de déshydroxylation et ramenée à la température ambiante. Par cette méthode, la séricite du type 2M1 a été transformée en un minéral interstratifié. Les propriétés de ce minéral interstratifié en diffraction des rayons X sont semblables à celles de la “rectorite”.

Kurzreferat

Kurzreferat

Zwischenschicht-K wurde mittels Natrium Tetraphenyl boronlösung aus einem Serizitpulver, das auf die Dehydroxylierungstemperatur erhitzt und dann auf Zimmertemperatur abgeschreckt worden war, extrahiert. Durch diesen Vorgang wurde Serizit des 2M1 Typs in ein zwischengeschichtetes Mineral verwandelt. Die Röntgenbeugungseigenschaften dieses zwischengeschichteten Minerals sind ähnlich denen von ‘Rectorit’.

Резюме

Резюме

Из размолотого серицита нагретого до температуры дегидроксилизации и охлажденного до комнатной температуры раствором тетрафенилборного натрия экстрагировался промежуточный слой К. Этой процедурой серицит типа 2М1 был преобразован в слоистый минерал. Рентгенографическое исследование показало, что диффракционная картина этого слоистого минерала такая же как у ректорита.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, I., (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves and water content Am. Mineralogist 33 655678.Google Scholar
Barshad, I., (1954) Cation exchange in micaceous minerals: Replaceability of ammonium and potassium from vermiculite, biotite and montmorillonite Soil Sci. 78 5776.CrossRefGoogle Scholar
Bradley, W. F., (1950) The alternating layer sequence of rectorite Am. Mineralogist 35 590595.Google Scholar
Brindley, G. W., (1956) Allevardite Am. Mineralogist 41 91103.Google Scholar
Brown, G. and Weir, A. H., (1963) The identity of rectorite and allevardite Proc. International Clay Conference, 1963 1 2735.Google Scholar
De Mumbrum, L. E., (1959) Exchangeable potassium levels in vermiculite and K-depleted micas, and implications relative to potassium levels in soils Soil Sci. Soc. Am. Proc. 23 192194.CrossRefGoogle Scholar
De Mumbrum, L. E., (1963) Conversion of mica to vermiculite by potassium removal Soil Sci. 96 275276.CrossRefGoogle Scholar
Green-Kelly, R., (1955) Dehydration of the montmorillonite Mineral. Mag. 30 604615.Google Scholar
Grim, R. E. and Kulbicki, G., (1961) Montmorillonite: High temperature reactions and classification Am. Mineralogist 46 13291369.Google Scholar
Hanway, J. J., (1956) Fixation and release of ammonium in soils and certain minerals Iowa State Coll. J. Sci. 30 374375.Google Scholar
Heller, L., Farmer, V. C., Mackenzie, R. C., Mitchell, B. D. and Taylor, H. F. W., (1962) The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals Clay Miner. Bull. 5 5672.CrossRefGoogle Scholar
Iiyama, J. T. and Roy, R., (1963) Controlled synthesis of heteropolytypic (mixed-layer) clay mineral Clays and Clay minerals 10 422.Google Scholar
Jackson, M. L. and Sherman, G. D., (1953) Chemical weathering in soils Advanc. Agron. 5 219318.CrossRefGoogle Scholar
Kobayashi, K. and Oinuma, K., (1960) Clay mineralogical study on sedimentary rocks of Kamisunagawa district, Ishikari coal-field, Hokkaido J. Geol. Soc. Japan 779 506516.CrossRefGoogle Scholar
MacEwan, D. M. C., (1956) Fourier transform methods for studying scattering from lamellar systems —I. A direct method for analysing interstratified mixtures Kolloid Z. 149 96108.CrossRefGoogle Scholar
MacEwan, D. M. C., (1956) Illite-montmorillonite Clays and Clay Minerals 2 166172.Google Scholar
MacEwan, D. M. C., (1958) Fourier transform methods for studying X-ray scattering from lamellar system—II. The calculation of X-ray diffraction effects for various types of interstratification Kolloid Z. 156 6167.CrossRefGoogle Scholar
Mortland, M. M., (1958) Kinetics of potassium release from biotite Soil Sci. Soc. Am. Proc. 22 503508.CrossRefGoogle Scholar
Rausell-Colom, J. A., Sweatmen, C. B., Wells, C. B. and Norrish, K. (1965), In Experimental Pedology (Edited by Holdsworth, E. G. and Crawford, D. V.), pp. 4072, Butterworths, London.Google Scholar
Rich, C. I. and Cook, M. G., (1963) Formation of dioctahedral vermiculite in Verginia soils Clays and Clay Minerals 10 96106.Google Scholar
Sato, M., (1965) Structure of interstratified (mixed-layer) minerals Nature 208 7071.CrossRefGoogle Scholar
Serratosa, J. M., (1960) Dehydration studies by infrared spectroscopy Am. Mineralogist 45 11011104.Google Scholar
Scott, A. D., Hunziker, R. R. and Hanway, J. J., (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—I. Preliminary experiments Soil Sci. Soc. Am. Proc. 24 191194.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—II. Biotite Soil Sci. Soc. Am. Proc. 26 4145.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron— III. Illite Soil Sci. Soc. Am. Proc. 26 4548.CrossRefGoogle Scholar
Scott, A. D., (1968) Effect of particle size on interlayer potassium exchange in micas Trans. 9th Cong. Int. Soil Sci. Soc. 2 649660.Google Scholar
Stubicăn, V. and Roy, R., (1961) A new approach to assignment of infrared absorption bands in layer-structure silicates Z. Krist. 115 200214.Google Scholar
Stubicăn, V. and Roy, R., (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates Am. Mineralogists 3251.Google Scholar
Sudo, T., Hayashi, H. and Shimoda, S., (1962) Mineralogical problems of intermediate clay minerals Clays and Clay Minerals 9 378392.CrossRefGoogle Scholar
Tettenhorst, R. and Johns, W. D., (1963) Interstratification in montmorillonite Clays and Clay Minerals 13 8593.Google Scholar
Tornita, K. and Sudo, T., (1968) Interstratified structure formed from a pre-heated mica by acid treatments Nature 217 10431044.Google Scholar
Tornita, K. and Sudo, T., (1968) Conversion of mica into an interstratified mineral Rept. Faculty of Sci., Kagoshima Univ. 1 89119.Google Scholar
Tomita, K. and Sudo, T., (1971) Transformation of sericite into an interstratified mineral Clays and Clay Minerals 19 263270.CrossRefGoogle Scholar
Ueda, S. and Sudo, T., (1966) Synthesis of an interstratified mineral from mica Nature 211 13931394.CrossRefGoogle Scholar
White, J. L., (1956) Layer charge and interlamellar lattice silicates Clays and Clay Minerals 4 133146.Google Scholar
White, J. L., (1958) Layer charge and interlamellar expansion in a muscovite Clays and Clay Minerals 5 289294.Google Scholar