Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T10:19:45.203Z Has data issue: false hasContentIssue false

Hydrothermal Origin of the Clays from the Upper Slopes of Mauna Kea, Hawaii

Published online by Cambridge University Press:  01 July 2024

F. C. Ugolini*
Affiliation:
College of Forest Resources, University of Washington, Seattle, Washington 98195, U.S.A.

Abstract

The soils of the summit region of Mauna Kea are similar to the soils of the high mountain deserts and to the soils of cold deserts. Dramatic differences, however, exist between the soils of the summit and other neighboring cones and the soils of the glaciated terrain. The soils of some of the cones of the summit area are clay rich and contain phyllosilicate minerals; the soils of the glaciated terrain are sandy and contain X-ray amorphous clay. Montmorillonite and a Mg-rich trioctahedral mineral identified as saponite are the clay minerals of the summit. Because the summit area of Mauna Kea supported an ice cap at the time of the formation of the cones, the origin of the smectite minerals could have resulted from the alteration of the tephra by steam and water released in the melting of the ice. Hypogene fluids are, however, more likely to be responsible for the genesis of the phyllosilicate minerals.

Résumé

Résumé

Les sols de la zone du sommet du Mauna Kea sont semblables aux sols des déserts de haute montagne et aux sols des déserts froids. Des différences considérables, cependant, existent entre les sols du sommet et d’autres cônes voisins, et les sols du terrain qui a été recouvert par la glace. Les sols d’un certain nombre de cônes de la région du sommet sont riches en argile et contiennent des minéraux phyllosilicatés; les sols du terrain qui a été recouvert par la glace sont sableux et contiennent de l’argile amorphe aux rayons X. La montmorillonite et un minéral trioctaédrique riche en Mg identifié à la saponite sont les minéraux argileux du sommet. Etant donné que la zone du sommet du Mauna Kea était recouverte d’une calotte de glace à la période de formation des cônes, l’origine des minéraux du type smectite pourrait être trouvée dans l’altération de la tephra par la vapeur et l’eau libérées lors de la fusion de la glace. Cependant, les fluides de profondeur sont plus probablement responsables de la genèse des minéraux phyllosilicatés.

Kurzreferat

Kurzreferat

Die Böden der Gipfelregionen des Mauna Kea ähneln den Böden der hohen Bergwüsten und den Böden der kalten Wüsten. Drastische Unterschiede bestehen jedoch zwischen den Böden des Gipfels und anderer benachbarter Kegel und den Böden des vereisten Gebietes. Die Böden einiger der Kegel des Gipfelgebietes sind tonreich und enthalten Phyllosilicatminerale. Die Böden des Vereisungsgebietes sind sandig und enthalten röntgenamorphe Tone. Montmorillonit und ein magnesiumreiches trioktaedrisches Mineral, das als Saponit identifiziert wurde, bilden die Tonminerale des Gipfels. Da das Gipfelgebiet des Mauna Kea zur Zeit der Bildung der Kegel eine Eiskappe trug, könnte die Entstehung der Smectitminerale das Ergebnis der Umwandlung der Tephrite durch Dampf und Wasser sein, die beim Schmelzen des Eises frei wurden. Mit größerer Wahrscheinlichkeit sind jedoch hypogene Lösungen für die Entstehung der Phyllosilicatminerale verantwortlich.

Резюме

Резюме

Почвы площадей горных вершин Мауна Кея подобны почвам высокогорных пустынь и холодных пустынных территорий. Однако, резкие различия существуют между почвами горных вершин и соседними конусами и местностями, охваченными оледенением. Почвы некоторых конусов на площади горных вершин богата глиной и содержит листовой силикат; земля местностей, охваченных олединением песчаная и содержит аморфную глину с характерным спектром Р.л. Монтмориллонит и триоктаздральный минерал богатый содержанием Mg идентифицированный как сапонит являются глинистыми минералами горных вершин, так как во время образования конусов площадь вершин гор Мауна Кея была покрыта ледниковым покровом, зарождение смектитовых минералов произошло вследствие изменения тефры паром и водой, образовавшихся при таянии льда. Однако, более вероятно, что галогенные жидкости отвечают за происхождение листового силиката.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomine, S. and Jackson, M. L., (1959) Allophane determination in Ando soils by cation exchange capacity delta value Soil Sci. Soc. Am. Proc. 23 210214.CrossRefGoogle Scholar
Aomine, S. and Wada, K., (1962) Differential weathering of volcanic ash and pumice, resulting in formation of hydrated holloysite Amer. Min. 47 10241048.Google Scholar
Briner, G. P. and Jackson, M. L., (1970) Mineralogical analysis of clays in soils developed from basalts in Australia Israel J. Chem. 8 487500.CrossRefGoogle Scholar
de Villiers, J. M. and Jackson, M. L., (1967) Aluminous chlorite origin of pH-dependent cation exchange capacity variations Soil Sci. Soc. Am. Proc. 31 614619.CrossRefGoogle Scholar
Greene-Kelly, R., (1955) Dehydration of montmorillonite minerals Mineral. Mag. 30 604615.Google Scholar
Grim, R. E., (1968) Clay Mineralogy 2nd Edn New York McGraw-Hill.Google Scholar
Hallsworth, E. G. Robertson G. K. and Gibbons, F. R., (1955) Studies in pedogenesis in New South Wales VII. The “Gilgai” soils J. Soil Sci. 6 131.CrossRefGoogle Scholar
Hendricks, D. M., Whittig, L. D. and Jackson, M. L., (1967) Clay mineralogy of andesite saprolite Clays and Clay Minerals 15 395407.CrossRefGoogle Scholar
Jackson, M. L., (1956) Soil chemical analysis—Advanced course Madison Dept. of Soil Science, Univ. of Wisconsin 894.Google Scholar
Jackson, M. L. and Bear, F. E., (1965) Chemical composition of soils Chemistry of the Soil 2nd Edn. New York Reinhold 71141.Google Scholar
Jackson, M. L., (1969) Soil chemical analysis—Advanced course 2nd Edn. Madison Dept. of Soil Science, Univ. of Wisconsin.Google Scholar
Kanehiro, Y., Sherman, G. D. et al., Black, C. A. et al., (1965) Fusion with sodium carbonate for total elemental analysis Methods of Soil Analysis Madison, Wisconsin American Society of Agronomy 952958.Google Scholar
McLean, E. O. et al.,Black, C. A.et al., (1965) Aluminium Methods of Soil Analysi Madison, Wisconsin American Society of Agronomy 978998.Google Scholar
Mehra, P. O. and Jackson, M. L., (1960) Iron oxide removal from soils and clay by a dithionite-citrate system with sodium bicarbonate buffer Clays and Clay Minerals 7 317327.Google Scholar
Millot, G., (1970) Geology of Clays Berlin Springer 429.CrossRefGoogle Scholar
Mokma, D. L., Jackson, M. L., Syers, J. K. and Gibbons, F. R., (1974) Mineralogy and radioisotope retention properties of a chronosequence of soils developed in basalts of Victoria, Australia J. Soil Sci. 24 199214.CrossRefGoogle Scholar
Mueller-Dombois, D., Krajina, V. J., Misra, R. and Gopal, B., (1968) Comparison of east-flank vegetations on Mauna Loa and Mauna Kea, Hawaii Proc. Symp. Recent Adv. Trop. Ecol. Varanasi, India The International Society for Tropical Ecology 508520.Google Scholar
Porter, S. C., (1970) Personal communication .Google Scholar
Porter, S. C., (1971) Holocene eruptions of Mauna Kea volcano, Hawaii Science 172 375377.CrossRefGoogle ScholarPubMed
Porter, S. C., (1972) Buried calders of Mauna Kea volcano, Hawaii Science 175 14581460.CrossRefGoogle Scholar
Raine, C. T., (1939) Meteorological reports of the Mauna Kea expedition 1935 (II). The meteorological observations at Lake Waiau, August 8–19, 1935 Bull. Amer. Meteor. Soc. 20 97103.CrossRefGoogle Scholar
Reynolds, R. C., (1971) Clay mineral formation in an Alpine environment Clays and Clay Minerals 19 361374.CrossRefGoogle Scholar
Rich, C. I., (1957) Determination of (060) reflections of clay minerals by means of counter type X-ray diffraction instruments Amer. Min. 42 569570.Google Scholar
Ross, C. S. and Hendricks, S. B., (1945) Minerals of the montmorillonite group, their origin and relation to soils and clays U.S. Geol. Survey Prof. Paper 205-B 2379.Google Scholar
Lai, S.-H. and Swindale, L. D., (1969) Chemical properties of allophane from Hawaiian and Japanese soils Soil Sci. Soc. Am. Proc. 33 804808.CrossRefGoogle Scholar
Tagliaferro, W. J., (1971) Written communication .Google Scholar
Tan, K. H., (1969) Chemical and thermal characteristics of allophane in Andosols of the tropics Soil Sci. Soc. Am. Proc. 33 469472.CrossRefGoogle Scholar
Ugolini, F. C. and Bockheim, J. G., (1972) Properties and genesis of Humuula paleosols and modern soils, Mauna Kea, Hawaii Abst. 68th Ann. Meet. Cordilleran Section, Geol. Soc. Amer. 4 252.Google Scholar
Woodcock, A. H., Rubin, M. and Duce, R. A., (1966) Deep layer of sediments in alpine lake in the tropical mid-Pacific Science 154 647648.CrossRefGoogle ScholarPubMed
Woodcock, A. H., Furumoto, A. S. and Woollard, G. P., (1970) Fossil ice in Hawaii? Nature 226 873.CrossRefGoogle ScholarPubMed