Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-03T14:09:06.321Z Has data issue: false hasContentIssue false

The I.R. Spectra of Interlamellar Kaolinite-Amide Complexes—I. The Complexes of Formamide, N-Methylformamide and Dimethylformamide

Published online by Cambridge University Press:  01 July 2024

S. Olejnik*
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009
A. M. Posner
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009
J. P. Quirk
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009
*
*Present address: University of Oxford, Physical Chemistry Laboratory, South Parks Road, OX13QZ, England.

Abstract

The i.r. spectra of interlamellar kaolinite complexes with formamide, N-methylformamide and dimethylformamide have been examined. The spectra show that the amides hydrogen-bond, through the C=O group of the amide to the inner surface kaolinite hydroxyls and decrease the intensity of the kaolinite ν(OH) bands. Hydrogen-bonded kaolinite hydroxyl bands appear at lower frequencies and these have been correlated to the original kaolinite ν (OH) bands. Other kaolinite bands in the complexes show smaller perturbations of the kaolinite vibrations. Each amide hydrogen-bonds to different groups of hydroxyls. Formamide hydrogen-bonds to the 3690 and 3664 cm−1 hydroxyls, N-methylformamide to the 3690 and 3648 cm−1 hydroxyls. The interpretation for the dimethylformamide complex is less clear. The ν(NH) frequencies of formamide and N-methylformamide in the complexes are intermediate between that in dilute non-polar solution and in the liquid. This could arise from either or both a degree of intermolecular association of the amide when between the kaolinite lamellae, or to weak N—H … O hydrogen bonds to the tetrahedral oxygen sheet of the lamellae.

Résumé

Résumé

Les spectres i.r. des complexes interlamellaires de la kaolinite avec la formamide, la N-méthylformamide et la diméthylformamide ont été étudiés. Les spectres montrent que les amides sont liés par une liaison hydrogène qui s’établit entre le groupe C=0 de l’amide et les hydroxyles de la surface interne de la kaolinite, ce qui entraîne une diminution de l’intensité des bandes ν(OH) de la kaolinite. Les bandes des hydroxyles pontés de la kaolinite apparaissent à des fréquences plus basses, qui ont été reliées aux bandes ν(OH) de la kaolinite originelle. Dans les complexes, d’autres bandes de la kaolinite montrent de petites perturbations des vibrations de la kaolinite. Chaque amide établit des liaisons hydrogène avec différents groupes d’hydroxyles. La formamide établit une liaison hydrogène avec les hydroxyles à 3690 et 3664 cm−1, et la N-méthylformamide avec les hydroxyles à 3690 et 3648 cm−1. L’interprétation du complexe avec la diméthylformamide est moins évidente. Les fréquences ν(NH) de la formamide et de la N-méthylformamide dans les complexes, sont intermédiaires entre celles d’une solution diluée en milieu non polaire et celles du liquide. Ceci pourrait provenir soit, ou à la fois d’une certain degré d’association intermoléculaire de l’amide lorsqu’elle est entre les feuillets de kaolinite, soit de liaisons hydrogène faibles N—H…O s’établissant avec la couche des atomes d’oxygène tétraédriques du feuillet.

Kurzreferat

Kurzreferat

Die Ultrarotspektren interlamellarer Kaolinitkomplexe mit Formamid, N-Methylformamid und Dimethylformamid wurden untersucht. Die Spektren zeigen, dass die Amide eine Wasserstoffbrücke über die C=0 Gruppe des Amids zu den Hydroxylgruppen an der inneren Oberfläche des Kaolinits bilden und die Intensität der Kaolinit ν(OH) Banden vermindern. Wasserstoffbrücken-Kaolinit Hydroxybanden erscheinen bei niedrigeren Frequenzen, und diese sind mit den ursprünglichen Kaolinit ν(OH) Banden in Beziehung gebracht worden. Andere Kaolinitbanden in den Komplexen zeigen geringere Störungen der Kaolinitschwingungen. Jedes Amid bildet eine Wasserstoffbrücke zu verschiedenen Gruppen von Hydroxylen, und zwar bildet Formamid Wasserstoff brücken zu den 3690 und 3664 cm−1 Hydroxylen, und N-Methylformamid zu den 3690 und 3648 cm−1 Hydroxylen. Die Ausdeutung ist weniger klar für den Dimethyjformamidkomplex. Die ν(NH) Frequenzen des Formamids und des N-Methylformamids in den Komplexen nehmen eine Zwischenstellung ein zwischen den Werten in verdünnter, nichtpolarer Lösung und in der Flüssigkeit. Das kann seine Ursache in einer oder beider der folgenden Erscheinungen haben: nämlich ein bestimmtes Mass intermolekularer Assoziation des Amids wenn es sich zwischen den Kaolinitlamellen befindet, oder aber schwache N—H … O Wasserstoffbrücken zum tetraedrischen Sauerstoffblatt der Lamellen.

Резюме

Резюме

Изучены инфракрасные спектры межслоевых комплексов каолинита с формамидом, N-метилформамидом и диметилформамидом. Спектры показали, что амиды за счет своих групп С=O образуют водородные связи с внутренними гидроксильными поверхностями каолинитовых слоев и уменьшают интенсивность каолинитовых полос ОН. Полосы водородных связей, образованных гидроксилами каолинита, наблюдаются при более низких частотах; они могут быть сопоставлены с полосами ОН исходного каолинита. Другие каолинитовые полосы в комплексах обнаруживают лишь незначительные изменения каолинитовых вибраций. Каждая амидная группа связана водородной связью с различными группами ОН. Формамид образует водородную связь, отвечающую гидроксилам, которые дают полосы при 3690 и 3664 см−1, N-метилформамид — при 3690 и 3648 см−1. Интерпретация ИК-спектров комплексов с диметилформамидом менее ясна. Частота колебаний групп NH формамида и N-метилформамида в комплексах является промежуточной между частотой колебания в разбавленном неполярном растворе и в жидкости. Это может быть обусловлено либо степенью межмолекулярного взаимодействия амидов между слоями каолинита, либо слабыми водородными связями типа N—H…O с тетраэдрическими кислородными поверхностями каолинитовых слоев, либо двумя этими причинами.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alexander, R., Ko, E. S. F., Mac, Y. S. and Parker, A. J. (1967) Solvation of Ions. Solubility products and in stability constants in water, methanol, formamide, dimethylformamide, dimethylacetamide, dimethyl sulphoxide, acetonitrile, and hexamethylphosphorotriamide: J. Am. Chem. Soc. 89, 37033712.CrossRefGoogle Scholar
Badger, R. M. and Rubalcova, H. (1954) The infrared association spectra of amides in solution and their relation to the spectra of polypeptides: Proc. Nat. Acad. Sci. U.S.A. 40, 1217.CrossRefGoogle Scholar
Chalapathi, V. V. and Ramiah, K. V. (1965) Vibrational spectra of some tertiary amides: Current Sci. 34, 1213.Google Scholar
Chalapathi, V. V. and Ramiah, K. V. (1968) Normal vibrations of N, N-Dimethylformamide and N, N-Dimethylacetamide: Proc. Ind. Acad. Sci. 68, 109122.CrossRefGoogle Scholar
Davies, M., Evans, J. C. and Jones, R. L. (1955) Molec ular interaction and infrared absorption spectra —4. Methyl acetamide: Trans. Faraday Soc. 51, 761774.CrossRefGoogle Scholar
De Graaf, D. E. and Sutherland, G. B. B. M. (1957) Vibrational spectrum of N-Methylformamide: J. Chem. Phys. 26, 716717.Google Scholar
Dorris, K. L., Siddall, T. H., Stewart, W. E. and Good, M. L. (1967) Infrared spectra of some deuterated tertiary amides: Spectrochim. Acta 23A, 16571660.CrossRefGoogle Scholar
Farmer, V. C. (1964) Infrared absorption of hydroxyl groups in kaolinite: Science 145, 11891190.CrossRefGoogle ScholarPubMed
Farmer, V. C. and Russell, J. D. (1964) The infrared spec tra of layer silicates: Spectrochim. Acta 20, 11491173.CrossRefGoogle Scholar
Hayden, A. L., Brannon, W. L. and Yaciw, C. A. (1966) Infrared spectra of some compounds of pharmaceutical interest: J.Assoc. Off. Anal. Chem. 49, 11091153.Google Scholar
Jones, R. R. Lumley (1963) The infrared spectra of some simple N substituted amides in the vapour state: J. Molec. Spectro. 11, 411421.CrossRefGoogle Scholar
Krishnamurthy, S. S. and Soundararajan, S. (1967) Pyridine N-Oxide complexes of rare earth Perchlorates: Can. J. Chem. 45, 189191.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L. (1964a) Infrared study of the OH groups in expanded kaolinite: Science 143, 244246.CrossRefGoogle ScholarPubMed
Ledoux, R. L. and White, J. L. (1964b) Infrared study of selective deuteration of kaolinite and halloysite at room temperature: Science 145, 4749.CrossRefGoogle ScholarPubMed
Ledoux, R. L. and White, J. L. (1966) Infrared studies of the hydroxyl groups in intercalated kaolinite complexes: Clays and Clay Minerals 13, 289315.Google Scholar
Ledoux, R. L. and White, J. L. (1966a) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea: J. Colloid Interface Sci. 21, 127152.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L. (1966b) Infrared studies of hydrogen bonding of organic compounds on oxygen and hydroxyl surfaces of layer lattice silicates: Proc. Inter. Clay Conf. 1, 361374.Google Scholar
McLachlan, R. D. and Nyquist, R. A. (1964) An infrared study of some α-substituted secondary amides in solution: Spectrochim. Acta 20, 13971406.CrossRefGoogle Scholar
Miyazawa, T., Shimanouchi, T. and Mizushima, S. (1958) Characteristic infrared bands of monosubstituted amides: J. Chem. Phys. 24, 408418.CrossRefGoogle Scholar
Miyazawa, T. (1960) The characteristic band of secondary amides at 3100 cm-1: J. Molec. Spectro. 4, 168172.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M. and Quirk, J. P. (1968) Infrared spectra of kaolin mineral dimethyl sulfoxide complexes: J. Phys. Chem. 72, 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1970) The intercalation of polar organic compounds into kaolinite. Clay Minerals In Press.CrossRefGoogle Scholar
Parker, A. J. (1962) The effects of solvation on the properties of anions in dipolar aprotic solvents: Q. Review 16, 163187.CrossRefGoogle Scholar
Price, W. C. and Fraser, R. D. V. (1953) Infrared dichroism and protein structure: Proc. R. Soc. Lond. 141B, 6667.Google Scholar
Puranik, P. G. and Ramiah, K. V. (1959) Infrared and raman spectroscopic studies of the association of formamide: J. Molec. Spectro. 3, 486495.CrossRefGoogle Scholar
Ramiah, K. V. and Chalapathi, V. V. (1963) Infrared spectroscopic studies of amides and anilides: Proc. Ind. Acad. Sci. 58A, 233243.CrossRefGoogle Scholar
Russell, R. A. and Thompson, H. W. (1956) Vibrational spectra and geometrical isomerism in amides: Spectro chim. Acta 8, 138141.CrossRefGoogle Scholar
Serratosa, J. M., Hidalgo, A. and Vines, J. M. (1962) Orientation of OH bands in kaolinite: Nature 195, 486487.CrossRefGoogle Scholar
Serratosa, J. M., Hidalgo, A. and Vines, J. M. (1963) Infrared study of the OH groups in kaolin materials: Proc. Inter. Clay Conf. Stockholm 1, 1726.Google Scholar
Suzuki, I. (1962) Infrared spectra and normal vibrations of N-methylformamides HCONHCH3, HCONDCH3, DCONHCH3 and DCONDCH3: Bull. Chem. Soc. Japan 35, 540551.CrossRefGoogle Scholar
Wada, K. (1967) A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy: Clay Minerals 7, 5161.CrossRefGoogle Scholar
Weiss, A., Thielepape, W., Goring, G., Ritter, W. and Schafer, H. (1963) Kaolinite einlagerungs-verbindun gen: Proc. Inter. Clay Conf. Stockholm 1, 287305.Google Scholar
Weiss, A., Thielepape, W. and Orth, E. (1966) Neue kaolinite-einlagerungouerbindungen: Proc. Inter. Clay Conf. Jerusalem 1, 277293.Google Scholar

REFERENCES

Cruz, M., Laycock, A. and White, J. L. (1969) Perturba tion of OH groups in intercalated kaolinite donor- acceptor complexes —I. Formamide-, methyl form- amide-, and dimethyl formamide-kaolinite complexes. Proc. Inter. Clay Conf. Tokyo 1, 775789.Google Scholar
Tahoun, S. A. and Mortland, M. M. (1966a) Complexes of montmorillonite with primary, secondary, and tertiary amides —I. Protonation of amides on the surface of montmorillonite: Soil Sci. 102, 248321.CrossRefGoogle Scholar
Tahoun, S. A. and Mortland, M. M. (1966b) Complexes of montmorillonite with primary, secondary, and tertiary amides —II. Coordination of amides on the surface of montmorillonite: Soil Sci. 102, 314321.CrossRefGoogle Scholar