Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T03:20:44.401Z Has data issue: false hasContentIssue false

Mechanisms of Formation of Colored Clay-Organic Complexes. A Review

Published online by Cambridge University Press:  01 July 2024

B. K. G. Theng*
Affiliation:
Soil Bureau, D.S.I.R., Lower Hutt, New Zealand

Abstract

The interactions of clay minerals with organic compounds which give rise to the formation of colored complexes, are discussed. The color reactions of clays can be ascribed to a charge transfer between the mineral and the adsorbed species. The active sites on the clay are aluminums exposed at crystal edges and/or transition metal cations in the higher valency state at planar surfaces both of which can act as electron acceptors. The pH of the system, the nature of the solvent and that of the exchangeable cation, influence the rate of color development and the final intensity and quality of the color produced. Steric factors also play a part in reactions involving bulky organics. Some practical applications based on color reactions of clays with electron-donating organic substances are described.

Résumé

Résumé

Les interactions des minéraux argileux avec les composés organiques qui donnent naissance à la formation de complexes colorés sont discutées. Les réactions colorées avec les argiles peuvent être attribuées à un transfert de charge entre le minéral et l’espèce adsorbée. Les sites actifs de l’argile sont les atomes d’aluminium exposés sur les bords des cristaux, et/ou, les cations métalliques de transition dans un état de valence élevée sur les surfaces basales, chacun d’eux pouvant agir comme accepteur d’électrons. Le pH du système, la nature du solvant et celle du cation échangeable, influencent la vitesse du développement de la coloration, et l’intensité et la qualité finales de la teinte produite. Des facteurs stériques jouent également un rôle dans les réactions se produisant avec les composés organiques encombrants. Un certain nombre d’applications pratiques fondées sur les réactions colorées des argiles avec les composés organiques donneurs d’électrons sont décrites.

Kurzreferat

Kurzreferat

Die gegenseitige Einwirkung von Tonmineralen und organischen Verbindungen, die zur Bildung farbiger Komplexe führen kann, wird erörtert. Die Farbreaktionen der Tone kann einem Ladungsübergang zwischen Mineral und adsorbiertem Stoff zugeschrieben werden. Die Aktivstellen am Ton sind exponiertes Aluminium an den Kristallkanten und/oder Übergangsmetallkationen in der höheren Valenzstufe an ebenen Flächen, welche beide als Elektronenakzeptoren wirksam sein können. Das pH des Systems, die Art des Lösungsmittels und die des austauschfähigen Kations beeinflussen die Geschwindigkeit der Farbentwicklung und die schliessliche Stärke und Qualität der erzeugten Farbe. Sterische Faktoren spielen gleichfalls eine Rolle bei Reaktionen mit umfangreicheren organischen Stoffen. Es werden einige praktische Anwendungen auf Grund von Farbreaktionen von Tonen mit elektronenabgebenden organischen Stoffen angeführt.

Резюме

Резюме

Обсуждается характер взаимодействия глинистых минералов с органическими соединениями, которое приводит к образованию окрашенных комплексов. Цветная реакция глин может быть приписана перемещению заряда между минералом и адсорбированным веществом. Активными центрами на поверхности глины являются атомы алюминия, выходящие на грани кристаллов и/или катионы переходных металлов в высоко валентном состоянии на плоских поверхностях; оба типа центров могут вести себя как акцепторы электронов. На скорость появления окраски, ее конечную интенсивность и характер влияют рН системы, природа растворителя и обменных катионов. Стерические факторы также играют роль при реакциях с объемными органическими молекулами. Описаны некоторые примеры практического применения методики, основанного на цветных реакциях глин с злектронно-донорными органическими соединениями.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benesi, H. A., (1956) Acidity of catalyst surfaces—I. Acid strength from colors of adsorbed indicators J. Am. Chem. Soc. 78 54905494.CrossRefGoogle Scholar
Benesi, H. A., (1967) Acidity of catalyst surfaces—II. Amine titration using Hammett indicators J. Phys. Chem. 61 970973.CrossRefGoogle Scholar
Bloch, J. M., Charbonneile, J. and Kayser, F., (1953) The oxidizing power of montmorillonite C.r. hebd. Séanc. Acad. Sci. Paris 237 5759.Google Scholar
Bloch, J. M. and Kayser, F., (1953) Formation of pigments and traces of aromatic amines in the presence of montmorillonite as a catalyst Chim. lad. Paris 70 5863.Google Scholar
Bozassa, V. L., (1944) On the adsorption of some organic dyes by clays and clay minerals Am. Mineralogist 29 235241.Google Scholar
Briegleb, G., (1961) Elektronen-Donalor-Acceptor Komplexe Berlin Springer-Verlag.CrossRefGoogle Scholar
Brown, G. E., (1961) The X-Ray Identification and Crystal Structures of Clay Minerals 2nd Edn..Google Scholar
Dodd, C. G., (1955) Dye adsorption as a method of identifying clays Clays and Clay Technology, Calif. Div. of Mines Bull. 169 105111.Google Scholar
Dodd, C. G. and Ray, S., (1960) Semiquinone cation adsorption on montmorillonite as a function of surface acidity Clays and Clay Minerals 8 237251.CrossRefGoogle Scholar
Doner, H. E. and Mortland, M. M., (1959) Benzene complexes with copper(II) montmorillonite Science 166 14061407.CrossRefGoogle Scholar
Endell, J., Zorn, R. and Hofmann, U., (1941) The benzidine test for montmorillonite Angew. Chem. 54 376377.CrossRefGoogle Scholar
Flockhart, B. D., Leith, I. R. and Pink, R. C., (1969) Electron transfer at alumina surfaces—II. Electrondonor properties of aluminas Trans. Faraday Soc. 65 542551.CrossRefGoogle Scholar
Fripiat, J. J., (1964) New research methods in soil chemistry Trans. Intern. Congr. Soil Sci. 8th Bucharest 1 171192.Google Scholar
Fripiat, J. J., Jelli, A., Poncelet, G. and André, J., (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas J. Phys. Chem. 69 21852197.CrossRefGoogle Scholar
Green, B. K., (1950) Pressure-sensitive record material U.S. Pat. 505 470.Google Scholar
Greene-Kelly, R., (1955) Sorption of aromatic compounds by montmorillonite—I. Orientation studies Trans. Faraday Soc. 51 412424.CrossRefGoogle Scholar
Grim, R. E., (1968) Clay Mineralogy 2nd Edn. New York McGraw-Hill 407.Google Scholar
Hasegawa, H., (1961) Spectroscopic studies on the color reaction of acid clay with amines—I J. Phys. Chem. 65 292296.10.1021/j100820a025CrossRefGoogle Scholar
Hasegawa, H., (1962) Spectroscopic studies on the color reaction of acid clay with amines—II. The reaction with aromatic tertiary amines J. Phys. Chem. 66 834836.CrossRefGoogle Scholar
Hasegawa, H., (1963) Spectroscopic studies on the color reaction of acid clay—III. The coloration with polyenes and poiyacenes J. Phys. Chem. 67 12681270.CrossRefGoogle Scholar
Hauser, E. A. and Leggett, M. B., (1940) Color reactions between clays and amines J. Am. Chem. Soc. 62 18111814.CrossRefGoogle Scholar
Haxaire, A. and Bloch, J. M., (1956) The mechanism of adsorption by montmorillonite of azotized organic molecules Bull. Soc. Frc. Min. Crist. 79 464475.Google Scholar
Hendricks, S. B. and Alexander, L. T., (1940) A qualitative test for the montmorillonite type of clay minerals J. Am. Soc. Agron. 32 455458.CrossRefGoogle Scholar
Kranz, F. H., (1963) Pressure-sensitive copying sheets U.S. Pat. 079 271.Google Scholar
Krüger, D. and Oberlies, F., (1941) Catalytic oxidation of amines at the surface of negative adsorbents—II. Realization of a different course of the reaction in the oxidation of dimethylaniline and some of its homoiogs on bentonite and on other surfaces Chem. Ber. 74B 17111719.CrossRefGoogle Scholar
Krüger, D. and Oberlies, F., (1943) Structure and color reactions of montmorillonite earths Naturwissenschaften 31 92.CrossRefGoogle Scholar
Meunier, P., (1942) The action of montmorillonite clay on vitamin A and the phenomenon of mesomerism in the carotenoid group C.r. hebd. Séanc. Acad. Sci. Paris 215 470473.Google Scholar
Meunier, P., (1943) Action of acid clays on aromatic amines. Coloration and electromeric effect C.r. hebd. Séanc. Acad. Sci. Paris 217 449451.Google Scholar
Michaels, A. S., (1958) Deflocculation of kaolinite by alkali polyphosphates Ind. Eng. Chem. 50 951958.CrossRefGoogle Scholar
Mielenz, R. C. and King, M. E., (1951) Identification of clay minerals by staining tests Proc. Am. Soc. Test. Mater. 51 12131233.Google Scholar
Mortland, M. M., (1968) Protonation of compounds at clay mineral surfaces Trans. Intern. Congr. Soil Sci., 9th Adelaide 1 691699.Google Scholar
Mortland, M. M., (1970) Clay-organic complexes and interactions Advan. Agron. 22 75117.CrossRefGoogle Scholar
Mortland, M. M. and Pinnavaia, T. J., (1971) Formation of copper(II) arene complexes on the interlamellar surfaces of montmorillonite Nature 229 7577.Google Scholar
National Cash Register Company, (1963) Pressure-sensitive copying paper Ger. Pat..Google Scholar
National Cash Register Company, (1965) Recording papers with attapulgite Neth. Pat..Google Scholar
Norrish, K., (1954) The swelling of montmorillonite Discuss. Faraday Soc. 18 120134.CrossRefGoogle Scholar
Page, J. B., (1941) Unreliability of the benzidine color reaction as a test for montmorillonite Soil Sci. 51 133140.CrossRefGoogle Scholar
Papariello, G. J. and Janish, M. A. M., (1966) Diphenylpicrylhydrazyl as an organic analytical reagent in the spectrophotometric analysis of phenols Analyt. Chem. 38 211214.CrossRefGoogle Scholar
Ritzerfeld, W. and Ritzerfeld, G., (1961) Prints from matrices having a color supply of triphenylmethane dyes Ger. Pat .Google Scholar
Schenk, G., (1968) Organic Functional Group Analysis: Theory and Development Oxford Pergamon Press 7094.CrossRefGoogle Scholar
Solomon, D. H., (1968) Clay minerals as electron acceptors and/or electron donors in organic reactions Clays and Clay Minerals 16 3139.CrossRefGoogle Scholar
Solomon, D. H., Loft, B. C. and Swift, J. D., (1968) Reactions catalysed by minerals—IV. The mechanism of the benzidine blue reaction on silicate minerals Clay Minerals 7 389397.CrossRefGoogle Scholar
Solomon, D. H., Loft, B. C. and Swift, J. D., (1968) Reactions catalysed by minerals—V. The reaction of leuco dyes and unsaturated organic compounds with clay minerals Clay Minerals 7 399408.CrossRefGoogle Scholar
Takahashi, H., (1955) The effect of layered water on the color reaction of benzidine or other similar compounds with montmorillonite Bull. Chem. Soc. Japan 28 59.CrossRefGoogle Scholar
Theng, B. K. G. and Walker, G. F., (1970) Interactions of clay minerals with organic monomers Israel J. Chem. 8 417424.CrossRefGoogle Scholar
Vedeneeva, N. E., (1950) The mechanism of the color reaction of benzidine with montmorillonite Kolloid Zh. 12 1724.Google Scholar
Walling, C., (1950) The acid strength of surfaces J. Am. Chem. Soc. 72 11641168.CrossRefGoogle Scholar
Weil-Malherbe, H. and Weiss, J., (1948) Color reactions and adsorption of some aluminosilicates J. Chem. Soc. .CrossRefGoogle Scholar
Weiss, A., (1963) Mica-type layer silicates with alkylammonium ions Clays and Clay Minerals 10 191224.Google Scholar
Weiss, J., (1938) Note on some free radicals from benzidine and its derivatives Chem. Ind. 57 517518.Google Scholar
White, D. and Cowan, C. T., (1960) Aromatic amine derivatives of montmorillonite Trans. Br. Ceram. Soc. 59 1621.Google Scholar
Zechmeister, L. and Sandoval, A., (1945) The coloration given by vitamin A and other polyenes on acid earths Science 101 585.CrossRefGoogle ScholarPubMed