Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T00:44:39.394Z Has data issue: false hasContentIssue false

Mica Weathering Rates as Related to Mica Type and Composition

Published online by Cambridge University Press:  01 July 2024

R. A. Leonard*
Affiliation:
Department of Soil Science, North Carolina Agricultural Experiment Station, North Carolina State University, Raleigh, N.C. 27607
S. B. Weed*
Affiliation:
Department of Soil Science, North Carolina Agricultural Experiment Station, North Carolina State University, Raleigh, N.C. 27607
*
Research Soil Scientist, USDA, Watkinsville, Georgia 30677 (formerly Instructor, Department of Soil Science, North Carolina State University, Raleigh, North Carolina.
Professor of Soils, North Carolina State University, Raleigh, North Carolina.

Abstract

Potassium release rates from micas varying widely in type and composition were measured. A sodium tetraphenylboron solution was used as the extracting agent. Muscovites were found to be two orders of magnitude more stable than a naturally occurring phlogopite and biotite. Synthetic fluorphlogopite was as stable as some muscovites. Lepidolite was the most stable mica. Primary factors affecting mica stability are thought to be: Hydroxyl bond orientation, isomorphous replacement of OH by F, the stronger Lewis base, and structural factors that lead to compression or stretching of the K—O bond.

Résumé

Résumé

Les taux d’extraction du potassium de micas de types et de composition très différents ont été mesurés. Une solution de tétraphényl-bore de sodium a été utiliséc comme agent extracteur. On a trouvé que les muscovites étaient de deux ordres de grandeur plus stables que la phlogopite et la biotite naturelles. La fluorophlogopite synthétique était aussi stable que quelques muscovites. La lépidolite est le mica le plus stable. On pense que les facteurs primaires affectant la stabilité du mica sont: l’orientation de la liaison hydroxyle, le remplacement isomorphe de OH par F_, une base Lewis plus forte et les facteurs structurels qui occasionnent la compression ou l’allongement de la liaison K—O.

Kurzreferat

Kurzreferat

Die Geschwindigkeiten der Abgabe von Kalium aus Glimmern, die sich in Bezug auf Typ und Zusammensetzung stark yon einander unterschieden, wurden gemessen. Als Extraktionsmittel wurde eine Natriumtetraphenylborlösung verwendet. Es wurde festgestellt, dass Muskowite um zwei Grössenordnungen beständiger sind als ein natürlich vorkommender Phlogopit und Biotit. Synthetischer Fluorphlogopit war ebenso beständig wie gewisse Muskowite. Lepidolit stellte den beständigsten Glimmer dar. Man glaubt, dass die Beständigkeit der Glimmer in erster Linie durch folgende Faktoren beeinflusst wird: Orientierung der Hydroxylbindung, isomorpher Ersatz von OH durch F2, die stärkere Lewis Base, sowie strukturelle Faktoren, die Anlass zu einer Stauchung oder Dehnung der K—O Bindung geben.

Резюме

Резюме

Измерены скорости удаления калия из слюд, существенно различающихся по типу и составу. В качестве экстрагирующего агента применялся раствор натриевого тетрафенилбора. Установлено, что мусковиты на два порядка устойчивей природных флогопитов и биотитов. Синтетический фторфлогопит также устойчив как и некоторые мусковиты. Лепидолит оказался наиболее устойчивой слюдой. Выделены следующие первичные факторы, влияющие на устойчивость слюд: ориентация водородных связей, изоморфные замещения ОН на F, более сильное основание Люиса, и структурные факторы, приводящие к сжатию или растяжению связи К-0.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Published with the approval of the Director as Paper No. 2929 of the Journal Series.

References

Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves and water content: Am. Mineralogist 33, 665678.Google Scholar
Bassett, W. A. (1960) Role of hydroxyl orientation in mica alteration: Bul. Geol. Soc. Am. 71, 449456.CrossRefGoogle Scholar
Benson, S. W. (1960) The Foundation of Chemical Kinetics. McGraw-Hill, New York.Google Scholar
Brindley, G. W. and Kurtossy, Sari S. (1961) Quantitative determination of kaolinite by X-ray diffraction: Am. Mineralogist 46, 12051215.Google Scholar
Brown, G. (1965) Significance of recent structure determinations of layer silicates for clay studies: Clays and Clay Minerals 6, 7382.CrossRefGoogle Scholar
Burns, A. F. and White, J. L. (1963) Removal of potassium alters b-dimension of muscovites: Science 139, 3940.CrossRefGoogle Scholar
Cook, M. G. and Rich, C. I. (1963) Negative charge of dioctahedral micas as related to weathering: Clays and Clay Minerals 11, 4764.Google Scholar
Day, P. R. (1956) Report of the committee on physical analyses, 1954-55, Soil Science Society of America: Soil Sci. Soc. Am. Proc. 20, 167169.CrossRefGoogle Scholar
Donnay, G., Donnay, J. D. H. and Takeda, H. (1964) Trioctahedral one-layer micas. II. Predictions of the structure from composition and cell dimensions: Acta Cryst. 17, 13741381.CrossRefGoogle Scholar
Drits, V. A. (1969) Some general remarks on the structure of trioctahedral micas. Proc. Intern. Clay Conf., Tokyo, Vol. 1, pp. 5159.Google Scholar
Farmer, V. C. and Russell, J. D. (1964) The infrared spectra of layer silicates: Spectrochim. Acta. 20, 11491173.CrossRefGoogle Scholar
Foster, M. D. (1963) Interpretation of the composition of vermiculite and hydrobiotites. Clays and Clay Minerals 10, 7089.Google Scholar
Gruner, J. W. (1934) The structure of vermiculites and their collapse by dehydration. Am. Mineralogist 19, 557575.Google Scholar
Leonard, R. A. and Weed, S. B. (1967) Influence of exchange ions on the b-dimension of dioctahedral vermiculite: Clays and Clay Minerals 15, 149161.CrossRefGoogle Scholar
Leonard, R. A. and Weed, S. B. (1970) Effect of potassium removal on the b-dimension of phlogopite: Clays and Clay Minerals 18, 197202.CrossRefGoogle Scholar
Mehra, V. P. and Jackson, M. L. (1959) Constancy of the sum of mica unit cell potassium surface and interlayer sorption surface in vermiculite-illite clays: Soil Sci. Soc. Am. Proc. 23, 101105.CrossRefGoogle Scholar
Mortland, M. M. (1958) Kinetics of potassium release from biotite: Soil Sci. Soc. Am. Proc. 22, 503508.CrossRefGoogle Scholar
Radoslovich, E. W. (1962) The cell dimensions and symmetry of layer lattice silicates. II. Regression relations: Am. Mineralogist 47, 617636.Google Scholar
Radoslovich, E. W. (1963) Cell dimension studies on layer lattice silicates: A summary: Clays and Clay Minerals 11, 225228.Google Scholar
Radoslovich, E. W. and Norrish, K. (1962) The cell dimensions and symmetry of layer lattice silicates. I. Some structural concepts: Am. Mineralogist 47, 599616.Google Scholar
Raman, K. V. and Jackson, M. L. (1965) Layer charge relations in minerals of micaeous soils and sediments: Clays and Clay Minerals 14, 5368.CrossRefGoogle Scholar
Rausell-Colom, J. A., Sweatman, T. R., Wells, C. B. and Norrish, K. (1965) Studies in the artificial weathering of mica: Experimental Pedology Proe. 11th Easter School in Agrie. Sci., Univ. of Nottingham (Edited by Hallsworth, E. G. and Crawford, D. V.), pp. 4072. Butterworths, London.Google Scholar
Reed, M. G. and Scott, A. D. (1961) Flame photometric methods of determining the potassium in potassium tetraphenylborate: Anal. Chem. 33, 773775.Google Scholar
Reed, M. G. and Scott, A. D. (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions: Soil Sci. Soc. Am. Proc. 26, 437440.CrossRefGoogle Scholar
Shapiro, L. and Brannock, W. W. (1956) Rapid analysis of silicate rocks: U. S. Geot. Surv. Bui. 1036c, 1956.Google Scholar
Smith, J. V. and Yoder, H. S. (1956) Experimental and theoretical studies of the mica polymorphs: Mineral Mag. 31, 206235.Google Scholar
Sumner, M. E. and Bolt, G. H. (1962) Isotopic exchange of potassium in an illite under equilibrium conditions: Soil Sci. Soc. Am. Proc. 26, 541544.CrossRefGoogle Scholar
Tepikin, E. V., Drits, V. A. and Alexandroua, V. A. (1969) Crystal structure of iron biotite and construction of structural models for trioctahedral mica. Proc. Intern. Clay Conf, Tokyo, Vol. 1, pp. 4349.Google Scholar
Weed, S. B. and Leonard, R. A. (1963) Determination of Sr by X-ray emission in cation exchange capacity determinations: Soil Sci. Soc. Am. Proc. 27, 474475.CrossRefGoogle Scholar
Weed, S. V., Philen, O. D. Jr. and Leonard, R. A. (1969) X-ray emission spectroscopic determination of potassium in submilligram mica samples after sample treatment: Soil Sci. Soc. Am. Proc. 33, 318320.CrossRefGoogle Scholar