Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:16:40.815Z Has data issue: false hasContentIssue false

Mineralogy, Crystallinity, O18/O16, and D/H of Georgia Kaolins

Published online by Cambridge University Press:  02 April 2024

Ali Asghar Hassanipak*
Affiliation:
School of Geophysical Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
Eric Eslinger*
Affiliation:
Department of Geology, West Georgia College, Carrollton, Georgia 30117
*
1Present address: Department of Mining Engineering, University of Tehran, Tehran, Iran.
2Present address: Cities Service Oil and Gas Corporation, Technology Center, Box 3908, Tulsa, Oklahoma 74102.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mineralogy, kaolin crystallinity, Fe content, δO18, and δD were determined for late Cretaceous “soft” and early Tertiary “hard” Georgia kaolins. The crystallinity of the <0.5-, 0.5–1.0-, and 1.0–2.0- μm size fractions of soft kaolins was higher than that of equivalent size fractions of hard kaolins. δO18 and δD of the soft and hard kaolins ranged between 18.5 to 23.1‰, and −64 to −41‰, respectively, and could not be used to discriminate soft from hard kaolins. The trends of crystallinity vs. δO18 were different for kaolins collected at different localities, and, for a given sample, δO18 generally decreased with increasing crystallinity and with increasing crystallite size. These data indicate that the Tertiary kaolins could not have been simply derived from the Cretaceous kaolins by winnowing unless post-sedimentation recrystallization of one or both occurred. δD vs. δO18 systematics indicate that the late Cretaceous to early Tertiary Georgia kaolins crystallized over a temperature range of about 15°C in the presence of waters that varied little in isotopic composition.

Резюме

Резюме

Были определены минералогия, степень кристаллизации каолина, содержание Fе, δО18, и δD для “мягкого” позднемелового и “твердого” раннетретичного джорджийских каолинов. Кристальность фракций мягких каолинов размером <0,5-, 0,5-1,0-, и 1,0–2,0-рт была выше, чем кристальной» эквивалентных по размеру фракций твердых каолинов. δО18 и δD мягких и твердых каолинов колебались от 18,5 до 23,1% и от 64% до 41% соответственно и не могли быть использованы для распознавания мягких каолинов от твердых. Характер зависимости кристальности от δО18 был разный для каолинов, отобранных из разных мест, и для данного образца δО18 в основном уменьшается при увеличении кристальности и при увеличении размера кристаллитов. Эти данные указывают на то, что третичные каолины не могли просто формироваться из меловых каолинов путем механического фракционирования пока не произошла послеседиментационная перекристаллизация одного типа или обоих. δD в зависимости от δО18 показывают, что позднемеловые и раннетретичные каолины кристаллизировались в диапазоне изменений температуры около 15°С в присутствии вод, незначительно отличающихся по составу изотопов. [Е.G.]

Resümee

Resümee

Es wurde die Mineralogie, die Kaolinkristallinität, der Fe-Gehalt, die δO18- und δD-Werte an “weichen” Georgia-Kaolinen aus der späten Kreide und an “harten” Georgia-Kaolinen aus dem frühen Tertiär untersucht. Die Kristallinität der weichen Kaoline der Fraktionen <0,5; 0,5–1,0, und 1,0–2,0 μm war besser als die der entsprechenden Kornfraktionen der harten Kaoline. δO18 und δD der weichen und harten Kaoline lag zwischen 18,5 und 23,1‰ bzw. zwischen −64 bis −41‰ und konnte nicht zur Unterscheidung zwischen weichem und hartem Kaolin verwendet werden. Wurde die Kristallinität gegen δO18 aufgetragen, so waren die Trands für Kaoline von verschiedenen Vorkommen verschieden, und—bei einer gegebenen Probe—nahm der δO18-Wert im allgemeinen mit zunehmender Kristallinität und mit zunehmender Kristallgröße ab. Diese Daten deuten darauf hin, daß die tertiären Kaoline nicht einfach durch Sortierung aus den Kaolinen der Kreide entstanden sein können, ohne daß eine postsedimentäre Rekristallisation des einen oder beider Kaoline eintrat. Darstellungen von δD gegen δO18 zeigen, daß die spätkretazischen bis frühtertiären Georgia-Kaoline über einen Temperaturbereich von etwa 15üC in Gegenwart von Wässern kristallisierten, die in ihrer Isotopenzusammensetzung in geringem Maße variierten. [U.W.]

Résumé

Résumé

On a déterminé la minéralogie, la cristallinité de Kaolin, le contenu en Fe, δO18, et δD pour des kaolins de Georgie “mous” du bas Crétacé et “durs” du haut Tertiaire. La cristallinité de fractions de taille <0,5, 0,5–1,0 et 1,0–2,0 μm de kaolins mous était plus élevée que celle de fractions de tailles equivalentes de kaolins durs. δO18 et δD des kaolins mous et durs s’étendaient entre 18,5 à 23,1‰, et −64 à −41‰ respectivement, et ne pouvaient pas être employés pour discriminer entre les kaolins mous et les kaolins durs. Les tendances de cristallinité vs. δO18 étaient différentes pour les kaolins rassemblés à des localités différentes, et, pour un échantillon donné, δ18 diminuait généralement proportionnellement à une augmentation de cristallinité et à une augmentation de la taille de la cristallinité. Ces données indiquent que les kaolins Tertiaires ne peuvent pas être simplement dérivés des kaolins Crétacés, par ruissellement à moins que la recristallisation de l'un ou l'autre ne se soit produite. Les systématiques de δD vs. δO18 indiquent que les kaolins de Géorgie du bas Crétacé au haut Tertiaire se sont cristallisés sur une étendue de températures d’à peu près 15°C en la présence d'eaux qui ont varié peu de composition isotopique. [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Austin, R. S., 1972 The origin of the kaolin and bauxite deposits of Twiggs, Wilkinson, and Washington Counties, Georgia: Ph.D. dissertation Georgia Univ. Georgia, Athens.Google Scholar
Bambach, R. K. and Scotese, C. R., 1979 Paleogeographic reconstruction: the State of the Art Boulder, Colorado Short Course, Southeastern Section, Mtng., Geol. Soc. Amer., Geol. Soc. Amer..Google Scholar
Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structures Crystal Structure of Clay Minerals and their X-ray Identification London Monograph 5, Mineralogical Society 125195.CrossRefGoogle Scholar
Calvert, C. S., 1981 Chemistry and mineralogy of iron-substituted kaolinite in natural and synthetic systems Texas Ph.D. dissertation, Texas A&M Univ., College Station.Google Scholar
Craig, H., 1961 Standard for reporting concentrations of deuterium and oxygen 18 in natural water Science 133 18331834.CrossRefGoogle Scholar
Eslinger, E. V., 1971 Mineralogy and oxygen isotope ratios of hydrothermal and low-grade metamorphic argillaceous rocks Cleveland, Ohio Ph.D. dissertation, Case Western Research Univ..Google Scholar
Friedman, I., 1953 Deuterium content of natural water and other substances Geochim. Cosmochim. Acta 4 81103.CrossRefGoogle Scholar
Godfrey, J. D., 1962 The deuterium content of hydrous minerals from the east-central Sierra Nevada and Yosemite NationalPark Geochim. Cosmochim. Acta 26 12151245.CrossRefGoogle Scholar
Goldschmidt, V. M., 1926 Undersokelser over lersidimenter Nord. Jordbrugsfors. 434445.Google Scholar
Grim, R. E. and Wahl, F. M., 1968 The kaolin deposits of Georgia and South Carolina, USA Proc. 23rd Int. Geol. Cong., Prague 921.Google Scholar
Hassanipak, A. A., 1980 Isotopie geochemical evidence concerning the origin of Georgia kaolin deposits: Ph.D. dissertation, Georgia Inst. Tech. Georgia Atlanta.Google Scholar
Herbillon, A. J., Mestdagh, M. M., Vielvoye, L., and De-rouane, E. G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils: Clay Miner. 11, 201220.CrossRefGoogle Scholar
Hinckley, D. N. and Swineford, A., 1963 Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina Clays and Clay Minerals, Proc. 11th Natl. Conf, Ottawa, Ontario, 1963 New York Pergamon Press 229235.Google Scholar
Hinckley, D. N., 1965 Mineralogical and chemical variations in the kaolin deposits of the Coastal Plain of Georgia and South Carolina Amer. Mineral. 50 18651883.Google Scholar
Hurst, V. J., Kunkle, A. C., Smith, J. M., Pickering, S. M., Shaffer, M. E., Smith, R. P., Williamson, M. E. and Moody, W. E., 1979 Field Conference on Kaolin, Bauxite, and Fuller’s Earth .Google Scholar
Jackson, M. L., 1956 Soil Chemical Analysis—Advanced Course Wisconsin Univ. Wisconsin, Dept. of Soils, Madison.Google Scholar
Kesler, T. L., 1963 Environment and origin of the Cretaceous kaolin deposits of Georgia and South Carolina Ga. Min. Newslet. 16 311.Google Scholar
Komusinski, J., Stock, L. and Dubiel, S. M., 1981 Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group minerals Clays & Clay Minerals 29 2330.CrossRefGoogle Scholar
Kulla, J. B., 1979 Oxygen and hydrogen isotopie fractionation factors determined in experimental clay-water systems: Ph.D. dissertation Illinois Univ. Illinois, Urbana.Google Scholar
Lambe, T. W., 1953 The structure of inorganic soils Proc. Amer. Soc. Civ. Eng. 79 149.Google Scholar
Lawrence, J. R., Taylor, H. P. Jr., 1971 Deuterium and oxygen-18 correlation: clay minerals and hydroxides in quaternary soils compared to meteoric waters Geochim. Cosmochim. Acta 35 9931003.CrossRefGoogle Scholar
Lawrence, J. R., Taylor, H. P. Jr., 1972 Hydrogen and oxygen isotope systematics in weathering profiles Geochim. Cosmochim. Acta 36 13771393.CrossRefGoogle Scholar
Mestdagh, M. M., Vielvoye, L. and Herbillon, A. J., 1980 Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Miner. 15 113.CrossRefGoogle Scholar
Murray, H. H., 1976 The Georgia sedimentary kaolins Proc. 7th Symp. Congress of Kaolin Inter. Geol. Correlation Program Tokyo, Japan, Univ. Tokyo Committee on correlation of age and genesis of kaolin 114125.Google Scholar
Neumann, F. R., 1927 Origin of the Cretaceous white clays of South Carolina Econ. Geol. 22 380386.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon Clays & Clay Minerals 25 436450.CrossRefGoogle Scholar
Rosenqvist, I. Th., 1959 Physicochemical properties of soils—soil-water systems Proc. Amer. Soc. Civil Engineers 3153.CrossRefGoogle Scholar
Savin, S. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochim. Cosmochim. Acta 34 2542.CrossRefGoogle Scholar
Savin, S. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of ocean sediments and shales Geochim. Cosmochim. Acta 34 4363.CrossRefGoogle Scholar
Sayin, M. and Jackson, M. L., 1975 Anatase and rutile determination in kaolinite deposits Clays & Clay Minerals 23 437443.CrossRefGoogle Scholar
Sheppard, S. M. F., Nielsen, R. L. and Taylor, H. P., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Econ. Geol. 64 755777.CrossRefGoogle Scholar
Smith, R. W., 1929 Sedimentary kaolins of the Coastal Plain of Georgia Ga. Geol. Surv. Bull. 44 474.Google Scholar
Stull, R. T. and Bole, G. A., 1926 Benefication and utilization of Georgia clays U.S. Bur. Mines Bull. .Google Scholar
Taylor, H. P. Jr. and Epstein, S., 1962 Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part I. Principles and experimental results Bull. Geol. Soc. Amer. 73 461480.CrossRefGoogle Scholar
Veatch, O., 1909 Second report on the clay deposits of Georgia Ga. Geol. Survey Bull. .Google Scholar