Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T20:21:27.700Z Has data issue: false hasContentIssue false

A New Nuclear but Non Radioactive Method for Rapid Elemental Analysis of Clays

Published online by Cambridge University Press:  01 July 2024

G. Demortier
Affiliation:
L.A.R.N., Facultés Universitaires de Namur, 22, rue Muzet, B-5000 Namur, Belgium
G. Hoffelt-Fontaine
Affiliation:
L.A.R.N., Facultés Universitaires de Namur, 22, rue Muzet, B-5000 Namur, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method using the bombardment of samples with protons and other positive ions of energy in the MeV range is described: the prompt atomic (γ-rays) and nuclear (γ-rays and charged particles) events generated during the bombardment, are detected with energy sensitive solid state detectors: cooled Ge(Li) for γ-rays and hard γ-rays, cooled Si(Li) detectors for soft γ-rays (3–20 keV) and Si-barrier detectors for charged particles. These 3 types of detectors can be simultaneously used for multipurpose experiments. These techniques are particularly useful for simultaneous detection of all the elements of interest in the sample. Comparisons are made with other microtechniques. Analyses of Li, Na, K, Ca, Rb, Cs and Cl exchanged in appropriate chloride solutions have been achieved for several clays (Geisenheim, Isola di Ponza, Layton). A new phenomenon relative to the anion contribution in cation exchangers is observed. A method of profile analysis of Na by resonant nuclear reactions is discussed.

Type
News
Copyright
Copyright © 1976 The Clay Minerals Society

References

Cookson, J. A., Ferguson, A. T. and Pilling, F. D. (1972) Proton microbeams, their production and use: J. Radioanal. Chem. 12, 3952.CrossRefGoogle Scholar
Debras, G. (1975) Analyse de l'azote par réaction (d, α). Rapport L.A.R.N.Google Scholar
Deconninck, G., Demortier, G. and Bodart, F. (1972a) Proc. Int. meeting Chemical Analysis by Charged Particle Bombardment Namur, September 1971. Elsevier Sequoia S.A. Lausanne.Google Scholar
Deconnink, G. and Demortier, G. (1972b) Quantitative analysis of Aluminium by prompt nuclear reactions: J. Radioanal. Chem. 12, 189208.CrossRefGoogle Scholar
Deconninck, G. (1972c) Quantitative analysis by (p, γ) and (p, X) reactions at low energies: J. Radioanal. Chem. 12, 157169.CrossRefGoogle Scholar
Deconninck, G. (1973a) Analyse de microquantités d'éléments traces dans des substances solides par bombardment d'ions: J. Radioanal. Chem. 17, 2943.CrossRefGoogle Scholar
Deconninck, G. and Demortier, G. (1973b) Dosage d'échantillons métalliques par réactions nucléaires et atomiques promptes: Proc. meeting on nuclear Techniques in the Basic Metal Industries, Helsinki 1972, A.I.E.A. Vienna.Google Scholar
Demortier, G. and Bodart, F. (1972a) Quantitative analysis of phosphorus by (p, γ) reactions: J. Radioanal. Chem. 12, 209219.CrossRefGoogle Scholar
Demortier, G., Gillet, C. and Lefebvre, J. (1972b) Trace element analysis and electrochemical studies of microquantities of biological samples by prompt atomic and nuclear reactions. Proc. meeting on Nuclear Activation in the Life Sciences, Bled 1972. A.I.E.A. Vienna.Google Scholar
Demortier, G., Lefebvre, J. and Gillet, C. (1972c) Ion exchange measurement in biological samples by prompt (p, X) and (p, p) reactions: J. Radioanal. Chem. 12, 277285.CrossRefGoogle Scholar
Demortier, G. (1974a) Dosage des éléments légers dans des échantillons biologiques par réactions nucléaires promptes. Radiochem. Radioanal. Lett. 16, 329341.Google Scholar
Demortier, G. (1974b) La fluorescence-X induite par protons. Applications à l'analyse quantitative: Le Vide. Les Couches Minces, suppl. 171, 224235.Google Scholar
Demortier, G. (1974c) Prompt analysis of biological samples by proton bombardment: Radiochem. Radioanal. Lett. 20, 197205.Google Scholar
Demortier, G. and Deconninck, G. (1975a) Thick target excitation yields of prompt γ-rays from proton bombardment of Rh, Pd, Ag, Pt and Au: J. Radioanal. Chem. 24, 437446.Google Scholar
Demortier, G. and Delsate, Ph. (1975b) Analysis of magnesium by prompt nuclear reactions: Radiochem. Radioanal Lett. 21, 219224.Google Scholar
Demortier, G., Freund, F. and Jasmund, K. (1976) Profile Analysis of Na in Albite Crystals: to be published.Google Scholar
Freund, F., Lindner, B., Demortier, G. and Thone, L. (1975a) Cl retention by bentonite in the presence of different cations: Proc. Int. Clay Conf., Mexico.Google Scholar
Freund, F. and Lindner, B. (1975b) A soft X-ray spectroscopic study of the interaction between Cl and various alkaline cations in aqueous environment: Proc. Int. Clay Conf., Mexico.Google Scholar
Fripiat, J. J. (1973), private communication.Google Scholar
Gordon, B. M. and Kraner, H. W. (1972) On the development of a system for trace element analysis in the environment by charged particle X-ray fluorescence: J. Radioanal. Chem. 12, 181188.CrossRefGoogle Scholar
Ligeon, E. and Bontemps, A. (1972) Nuclear reaction analysis of boron and oxygen in silicon: J. Radioanal. Chem. 12, 329341.CrossRefGoogle Scholar
Liebafsky, H. A., Pfeifer, H. G., Winslow, E. H. and Zemany, P. D. (1960) X-ray Absorption and Emission in Analytical Chemistry. Wiley, New York.Google Scholar
Reed, S. J. B. (1975) Electron Microprobe Analysis. Cambridge University Press, London.Google Scholar
Tamaki, Y., Omori, T. and Shiowaka, T. (1975) Chemical Effect of the Kα/Lβ intensity ratios in the 51Cr-labelled chromium compounds: Radiochem. Radioanal. Lett. 20, 255262.Google Scholar
Williamson, C. F., Boujot, J-P. and Picard, J. (1966) Tables of range and stopping power of chemical elements for charged particles of energy 0.05–500 MeV: Rapport CEA-R 3042, Paris.Google Scholar