Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-05T22:14:03.590Z Has data issue: false hasContentIssue false

Soil Minerals in the Al2O3-SiO2-H2O System and a Theory of Their Formation

Published online by Cambridge University Press:  01 July 2024

J. A. Kittrick*
Affiliation:
Department of Agronomy, Washington State University, Pullman, Wash. 99163
*
Professor of Soils.

Abstract

An attempt has been made to assemble the best thermodynamic information currently available for soil minerals in the Al2O3-SiO2-H2O system at 25°C and 1 atm. Montmorillonite is included by considering its aluminum silicate phase. Diagrams are presented so that the stability of the minerals can be visualized in relation to the ionic environment. Although the Al2O3-SiO2-H2O system is a very simple one compared to soils and sediments, the stability diagrams depict a mineral stability sequence and mineral pair associations that are in good agreement with natural relations.

According to the stability diagram, mineral pairs that can form in intimate association are gibbsite-kaolinite, kaolinite-montmorillonite, and montmorillonite-amorphous silica. Forbidden pairs are amorphous silica-kaolinite, amorphous silica-gibbsite, and montmorillonite-gibbsite. The formation of intimate mixtures of three or more of these minerals is also forbidden. The stability diagrams predict ion activity relationships that are in reasonable agreement with those obtained from soils and sediments.

Amorphous silica probably limits high silica levels, with montmorillonite also forming at high silica levels. Kaolinite forms at intermediate and gibbsite at low silica levels. These minerals in turn probably control the activity of aluminum ions at a level appropriate to the pH. The formation of gibbsite, kaolinite, montmorillonite and amorphous silica appears to be controlled by a combination of kinetics and equilibria. That is, the kinetic dissolution of unstable silicates appears to control the H4SiO4 level. The new mineral(s) most stable at that H4SiO4 level appear to precipitate in response to solution equilibria.

Résumé

Résumé

On a tenté de rassembler toutes les informations thermodynamiques actuellement disponibles sur les minéraux terrestres dans le système Al2O3-SiO2-H2O a 25°C et 1 atm. La montmorillonite y est incluse compte tenu de sa phase de silicate d’aluminum. Des diagrammes sont présentés de façon à ce que la stabilité des minéraux puisse être représentée en relation avec l’environnement ionique. Bien que le système Al2O3-SiO2-H2O soit très simple par comparaison aux sols et sédiments, les diagrammes de stabilité décrivent une sequence de stabilité minérale et des associations minérales paires qui sont en accord avec les relations naturelles.

Selon le diagramme de stabilité, les paires minérales qui peuvent se former en association intime sont gibbsite-kaolinites, kaolinites-montmorillonites. et silice amorphe montmorillonite. Les paires interdites sont les silices amorphes kaolinites. silices amorphes gibbsites, kaolinites montmorillonites, et silices amorphes montmorillonites. La formation de mélanges intimes de 3 ou plus de ces minéraux est également interdite.

Le diagramme de stabilité prédit des rapports d’activité ionique en accord raisonable avec ceux obtenus à partir des sols et des sédiments. Les silices amorphes limitent probablement des niveaux de silice élevés, avec de la montmorillonite se formant également à ces memes niveaux de silice. Les kaolinites se forment à des niveaux intermédiaires et les gibbsites à des niveaux de silice très bas. A leur tour, ces minéraux contrôlent probablement les activités des ions d’aluminum à un niveau approprié au pH. La formation de gibbsite, de kaolinite, de montmorillonite et de silice amorphe paraît être contrôlée par une combinaison de cynétique et d’équilibre. C’est à dire que la dissolution cynétique de silices instables semble contrôler le niveau H4SiO4. Le nouveau minéral le plus stable à ce niveau H4SiO4, semble précipiter en réponse à la solution d’équilibre.

Kurzreferat

Kurzreferat

Es wurde versucht, die besten derzeit erhältlichen thermodynamischen Daten für Bodenminerale im Al2O3-SiO2-H2O System bei 25°C und 1 Atmosphäre zu vereinigen. Montmorillonit wurde unter Berücksichtigung seiner Aluminiumsilikatphase miteingeschlossen. Aus den beigefügten Kurvenbildern lässt sich die Beständigkeit des Minerals in Bezug auf die lonenumgebung beurteilen. Obwohl das Al2O3-SiO2-H2O System im Vergleich mit Böden und Ablagerungen ein sehr einfaches ist, zeigen die Beständigkeitskurven eine Mineralbeständigkeitsfolge und Mineral-paarungen, die gut mit natürlichen Verhältnissen übereinstimmen.

Gemäss den Beständigkeitskurven können folgende Mineralpaare in enger Association geformt werden: Gibbsit-Kaolinit, Kaolinit-Montmorillonit und Montmorillonit-amorphe Kieselsäure. Verboten sind Paare von amorpher Kieselsäure-Kaolinit, amorpher Kieselsäure-Gibbsit und Mont-morillonit-Gibbsit. Die Bildung enger Mischungen von drei oder mehr dieser Minerale ist ebenfalls ausgeschlossen. Die Beständigkeitskurven weisen auf Ionenaktivitätsbeziehungen hin, die recht gut mit den aus Boden- und Ablagerungsproben erhaltenen übereinstimmen.

Amorphe Kieselsäure schliesst wahrscheinlich hohe Kieselsäureniveaus aus während Montmorillonite auch bei hohen Kieselsäureniveaus geformt werden. Kaolinit bildet sich bei mittleren, und Gibbsit bei niedrigen Kieselsäureniveaus. Diese Minerale bestimmen wahrscheinlich die Aktivität der Aluminiumionen a einem dem pH entsprechenden Niveau. Die Bildung von Gibbsit, Kaolinit. Montmorillonit und amorpher Kieselsäure scheint durch eine Kombination von Kinetik und Gleichuf gewichten bestimmt zu werden, d.h. die kinetische Auflösung unbeständiger Silikate scheint das H4SiO4 Niveau zu bestimmen. Die neuen auf diesem H4SiO4 Niveau beständigsten Minerale scheinen durch die Lösungsgleichgewichte zur Ausfällung gebracht zu werden.

Резюме

Резюме

Сделана попытка собрать наиболее достоверные термодинамические данные для минералов почв, образующихся в системе Аl2О3-SiO22О при 25°С и 1 атм. Монтмориллонит включен в связи с его алюмосиликатной составной частью. Диаграммы даны так, чтобы можно было составить представление о стабильности минералов в зависимости от их ионного окружения. Хотя система Аl2О3-SiO22О очень проста в сравнении с почвами и осадками, диаграммы эти изображают и последовательность стабильности и парные ассоциации минералов в хорошем согласии с природными соотношениями.

В соответствии с диаграммами стабильности, пары минералов, образующих тесные ассоциации, таковы: гиббсит—каолинит, каолинит—монтмориллонит, монтмориллонит—аморфный кремнезем. К запрещенным парам относятся: аморфный кремнезем—каолинит, аморфный кремнезем—гиббсит и монтмориллонит—гиббсит. Образование тонких смесей из трех (или более) минералов также запретно. Диаграммы стабильности позволяют предсказать соотношения активности ионов, удовлетворительно согласующиеся с найденными при изучении почв и осадков.

Аморфный кремнезем, вероятно, ограничивает верхний предел активности кремнезема, причем монтмориллонит образуется также при высокой активности кремнекислоты. Образование каолинита происходит при промежуточных, а образование гиббсита—при низких уровнях активности кремнезема. Эти минералы, вероятно, в свою очередь контролируют активность ионов алюминия в соответствии со значением рН. Образование гиббсита, каолинита, монтмориллонита и аморфного кремнезема, как кажется, контролируется совместным влиянием и кинетики и равновесия, т.е. кинетика растворения неустойчивых силикатов, по-видимому, контролирует уровень активности Н4SiO4; новый минерал или минералы, которые наиболее устойчивы при этом уровне активности Н4SiO4, повидимому, осаждаются в соответствии с равновесными отношениями в растоворе.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This investigation was supported in part, by contract WP-01016 with the U.S. Public Health Service, and is published as Scientific Paper No. 3215 Washington Agr. Exp. Sta. Proj. 1885.

References

Acquaye, D. K. and Tinsley, J. (1965) Soluble silica in soils: In Experimental Pedology (Edited by Hallsworth, E. G. and Crawford, D. V.). Butterworths, London, 126148.Google Scholar
Alexander, G. V., Heston, W. M. and Ihler, R. K. (1954) The solubility of amorphous silica in water: J. Phys. Chem. 58, 453455.CrossRefGoogle Scholar
Barany, R. and Kelley, K. K. (1961) Heats and free energies of formation of gibbsite, kaolinite, halloysite and dickite: U.S. Bur. Mines R. I. 5825, 13 pp.Google Scholar
Bricker, O. P. and Garrels, R. M. (1967) Mineralogic factors in natural water equilibria: In Principles and Applications of Water Chemistry (Edited by Faust, S. D. and Hunter, J. V.). Wiley, New York, 449469.Google Scholar
Bridge, J. (1953) Discussion: In Problems of Clay and Laterite Genesis. AIME Symp. 212214.Google Scholar
Deer, W. A., Howie, R. A. and Zussman, J. (1962) Rock Forming Minerals, Vol. 5. Non-Silicates: Wiley, New York.Google Scholar
Fournier, R. O. (1960) Solubility of quartz in water in the temperature interval from 25°C to 300°C: Bull. Geol. Soc. Am. 71, 18671868.Google Scholar
Frederickson, A. F. (1952) The genetic significance of mineralogy. In Problems in Clay and Laterite Genesis: AIME Symp. 111.Google Scholar
Frink, C. R. and Peech, M. (1962) The solubility of gibbsite in aqueous solutions and soil extracts: Soil Sci. Soc. Am. Proc. 26, 346347.CrossRefGoogle Scholar
Fyfe, W. S. and Hollander, M. A. (1964) Equilibrium dehydration of diaspore at low temperatures: Am. J. Sci. 262, 709712.CrossRefGoogle Scholar
Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals and Equilibria: Harper and Row, New York , 435 pp.Google Scholar
Hem, J. D. and Roberson, S. E. (1967) Form and stability of aluminum hydroxide complexes in dilute solutions: USGS Water-Supply Paper 1827-A.Google Scholar
Hitchen, C. S. (1935) A method for experimental investigation of hydrothermal solutions, with notes on its application to the solubility of silica: Trans. Inst. Mining Met. 44, 255280.Google Scholar
Jackson, M. L. (1964) Chemical composition of soils: In Chemistry of the Soil (Edited by Bear, F. E.). Am. Chem. Soc. Monograph 160, 2nd Edn. Reinhold, New York, pp. 71141.Google Scholar
Jackson, M. L. and Sherman, G. D. (1953) Chemical weathering of minerals in soils: Advan. Agron. 5, 219318.CrossRefGoogle Scholar
Jackson, M. L., Tyler, S. A., Willis, A. L., Bourbeau, G. A. and Pennington, R. P. (1948) Weathering sequence of clay-size minerals in soils and sediments -I. Fundamental generalizations: J. Phys. Coll. Chem. 52, 12371260.CrossRefGoogle Scholar
Keller, W. D. (1964) The origin of high-alumina clay minerals —a review: Clays and Clay Minerals 12, 129151.Google Scholar
Kennedy, G. C. (1950) A portion of the system silica- water: Econ Geol. 45, 629653.CrossRefGoogle Scholar
Kitahara, S. (1960) The polymerization of silicic acid obtained by the hydrothermal treatment of quartz and the solubility of amorphous silica: Rev. Phys. Chem. Japan 30(2), 131137.Google Scholar
Kittrick, J. A. (1966a) The free energy of formation of gibbsite and AI(OH), from solubility measurements: Soil Sci. Soc. Am. Proc. 30, 595598.CrossRefGoogle Scholar
Kittrick, J. A. (1966b) Free energy of formation of kaolinite from solubility measurements: Am. Mineralogist 51, 14571466.Google Scholar
Kittrick, J. A. (1967) Gibbsite-kaolinite equilibria: Soil Sci. Soc. Am. Proc. 31, 314316.CrossRefGoogle Scholar
Krauskopf, K. V. (1956) Dissolution and precipitation of silica at low temperatures: Geochim. Cosmochim. Acta 10, 126.CrossRefGoogle Scholar
Latimer, W. M. (1952) Oxidation potentials: 2nd Edn. Prentice-Hall , Englewood Cliffs, New Jersey, 392 pp.Google Scholar
Lindsay, W. L., Peech, M. and Clark, J. L. (1959) Determination of aluminum ion activity in soil extracts: Soil Sci. Soc. Am. Proc. 23, 266269.CrossRefGoogle Scholar
Mackenzie, F. T. and Garrels, R. M. (1966) Chemical mass balance between rivers and oceans: Am. J. Sci. 264, 507525.CrossRefGoogle Scholar
McKeague, J. A. and Cline, M. G. (1963) Silica in soils: Advan. Agron. 15, 339396.CrossRefGoogle Scholar
Miller, R. W. (1967) Soluble silica in soils: Soil Sci. Soc. Am. Proc. 31, 4650.CrossRefGoogle Scholar
Morey, G. W., Fournier, R. O. and Rowe, J. J. (1964) The solubility of amorphous silica at 25°C: J. Geophys. Res. 69, 19952002.CrossRefGoogle Scholar
Pierre, W. H., Pohlman, G. G. and McIlvaine, T. C. (1932) Soluble aluminum studies —I. Concentration of aluminum in the soil solution of naturally acid soils: Soil Sci. 34, 145160.CrossRefGoogle Scholar
Reesman, A. L. and Keller, W. D. (1968) Aqueous solubility studies of high-alumina and clay minerals: Am. Mineralogist 53, 929942.Google Scholar
Rex, R. W. (1967) Authigenic silicates formed from basaltic glass by more than 60 million yr contact with sea water, Sylvania Guyot, Marshall Islands: Clays and Clay Minerals 15, 195203.CrossRefGoogle Scholar
Schofield, R. K. and andTaylor, A. W. (1955) Measurements of the activities of bases in soils: J. Soil Sci. 6, 137146.CrossRefGoogle Scholar
Sherman, G. D. and Uehara, G. (1956) The weathering of olivine basalt in Hawaii and its pedogenic significance: Soil Sci. Soc. Am. Proc. 20, 337340.CrossRefGoogle Scholar
Siever, R. (1957) The silica budget in the sedimentary cycle: Am. Mineralogist 42, 821841.Google Scholar
Siever, R. (1962) Silica solubility, 0-200°C. and the diagenesis of siliceous sediments: J. G eoi 70. 127150.CrossRefGoogle Scholar
Stöber, W. (1967) Formation of silicic acid in aqueous suspensions of different silica modifications: In Equilibrium concepts in natural water systems (Edited by Gould, R. F.. Advan. Chem. Ser. 67. American Chemical Society. Washington D.C. pp. 161182.CrossRefGoogle Scholar
Stumm, W. and Leckie, J. O. (1967) Chemistry of ground waters: Models for their composition: Environ. Sci. Tech. 1, 298302.CrossRefGoogle ScholarPubMed
Van Lier, J. A. (1959) The solubility of quartz: Utrecht, Kermink en Zoon, 54 pp.Google Scholar
Van Lier, J. P., De Bruyn, P. L. and Overbeek, J. T. G. (1960) The solubility of quartz: J. Phys. Chem. 64, 16751682.CrossRefGoogle Scholar
Wagman, D. D., Evans, W. H., Halow, I., Parker, V. V., Bailey, S. M. and Schümm, R. H. (1968) Selected values of chemical thermodynamic properties. Tables for the first 34 elements in the standard order of arrangement: NBS Technical Note 720-3. U.S. Government Printing Office, Washington, 264 pp.Google Scholar
Wayman, C. H. (1963) Solid-gas interface in weathering reactions: Clays and Clay Minerals 11, 8494.Google Scholar
Wise, S. S., Margrave, J. L., Feder, H. M. and Hubbard, W. N. (1963) Fluorine bomb calorimetry —V. The heats of formation of silicon tetrafluoride and silica: J. Phys. Chem. 67, 815821.CrossRefGoogle Scholar
Wildman, W. E., Jackson, M. L. and Whitting, L. D. (1968) Iron-rich montmorillonite formation in soils derived from serpentinite: Soil Sci. Soc. Am. Proc. 32, 787794.CrossRefGoogle Scholar