Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T14:39:43.555Z Has data issue: false hasContentIssue false

Soil Minerals in the System Al2O3-SiO2-H2O: Phase Equilibrium Model

Published online by Cambridge University Press:  01 July 2024

Ward Chesworth*
Affiliation:
Department of Land Resource Sciences, University of Guelph, Guelph, Ontario, Canada

Abstract

Mineralogical reactions in the system Al2O3-SiO2-H2O are examined and an isothermal, isobaric cross-section of the portion of the system applicable to soil genesis, is determined. The relevance of the cross-section to soil mineralogy is discussed.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brydon, J. E., Kodoma, H. and Ross, G. J., (1968) Miner-alogy and weathering of the clays in orthic podzols and other podzolic soils in Canada: 9th Int. Soil Sci. Congress Vol. 3, pp. 4151.Google Scholar
Chesworth, W., (1972) The stability of gibbsite and boehmite at the surface of the earth Clays and Clay Minerals 20 369374.10.1346/CCMN.1972.0200604CrossRefGoogle Scholar
Chesworth, W., (1973) The parent rock effect in the genesis of soil Geoderma 10 215225.CrossRefGoogle Scholar
Chesworth, W., (1973) The residua system of chemical weathering: a model for the chemical breakdown of silicate rocks at the surface of the earth Soil Sci. 24 6981.CrossRefGoogle Scholar
Deer, W. A. Howie, R. A. and Zussman, J., (1962) Rock-Forming Minerals 3 270.Google Scholar
Dejou, J. Guyot, J. and Chaumont, C., (1972) La gibbsite, minéral banal d’alteration des formations superficielles et des sols développés sur socies cristallins et cristallophyl-liens dans les zones tempérées humides 24th. Int. Ceol. Congress, Canada X 417425.Google Scholar
Delvigne, J., (1965) Pédogenèse en Zone Tropicale. O.R.S.T.O.M. 177.Google Scholar
Devore, G., (1962) Compositions of silicate surfaces and surface phenomena Contr. Dep. Geol. Wyoming Univ. 2 2137.Google Scholar
Gardner, L. R., (1970) A chemical model for the origin of gibbsite from kaolinite Am. Miner. 55 13801389.Google Scholar
Garrels, R. M. and Christ, C. L., (1965) Solutions, Minerals and Equilibria New York Harper and Row 450.Google Scholar
Harder, H. and Flehmig, W., (1970) Quarzsynthese bei tiefen Temperaturen Geochim. cosmochim. Acta 34 295305.CrossRefGoogle Scholar
Kennedy, G. C., (1959) Phase relations in the system Al2O3-H2O at high temperatures and pressures Am. J. Sci. 257 563573.CrossRefGoogle Scholar
Kittrick, J. A., (1969) Soil minerals in the Al2O3-SiO2-H2O system and a theory of their formation Clays and Clay Minerals 17 157167.CrossRefGoogle Scholar
Kittrick, J. A., (1970) Precipitation of kaolinite at 25°C and at 1 atmosphere Clays and Clay Minerals 18 261267.CrossRefGoogle Scholar
Korzhinskii, D. S., (1959) Physicochemical Basis of the Analysis of the Paragenesis of Minerals New York Consultants Bureau, Inc. 142.Google Scholar
Mackenzie, F. T. and Gees, R., (1971) Quartz; synthesis at earth-surface conditions Science 173 533535.CrossRefGoogle ScholarPubMed
Polzer, W. L. Hem, J. D. and Gabe, H. J., (1967) Formation of crystalline aluminous hydrous aluminosilicates in aqueous solutions at room temperature U.S. Geol. Surv. Prof. 575-B 128132.Google Scholar
Robie, R. A., (1973) Report on project 9710-00299 for the period 20 Jan .Google Scholar
Roy, R. and Osborn, E. F., (1954) The system Al2O3-SiO2-H2O Am. Miner. 39 853.Google Scholar
Schreinemakers, F. A. H., (1916) In-, mono- and divariant equilibria Proc. K. ned. Akad. Wet. XII. 816824.Google Scholar
Stace, H. C. T. Hubble, G. E. Brewer, R. Northcote, K. H. Sleeman, J. R. Mulcahy, M. J. and Hallsworth, E. G., (1968) A Handbook of Australian Soils 435.10.1097/00010694-196910000-00013CrossRefGoogle Scholar
Thompson, J. B. and Abelson, P. H., (1959) Local equilibrium in metasomatic processes Researches in Geochemistry New York Wiley & Sons Inc. 427457.Google Scholar
Torkar, K. and Krischner, H., (1963) Uber die Eigenschaften reiner Alumiumhydroxyde und Oxyde erhalten mit hydrothermalen Darstellungsmethoden Bauxite Symposium 2535.Google Scholar
Zen, E. a., (1972) Gibbs free energy, enthalpy, and entropy often rock-forming minerals. Calculations, discrepancies, implications Am. Miner. 57 524553.Google Scholar