Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-29T11:15:39.715Z Has data issue: false hasContentIssue false

Surface Reactions of Parathion on Clays

Published online by Cambridge University Press:  01 July 2024

U. Mingelgrin
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
Sarina Saltzman
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel

Abstract

The adsorption-catalyzed degradation of parathion on clay surfaces is a hydrolysis process, proceeding either directly or through a rearrangement step. The rate and mechanism of degradation are dependent on the nature of the clay, its hydration status, and saturating cation. A mechanism for parathion degradation at adsorption sites on clay surfaces, in the absence of a liquid phase, is proposed.

Резюме

Резюме

Адсорбционно-каталитическая деградация паратиона на поверхностях глины является гидролизным процессом, протекающим непосредственно или через стадию перегруппировки. Скорость и механизм деградации зависят от природы глины, ее состояния гидратации и насыщающего катиона. Предлагается механизм деградации паратиона в местах адсорбции на поверхностях глины, в отсутствии жидкой фазы.

Kurzreferat

Kurzreferat

Die durch Adsorption katalysierte Degradation von Paration, welches sich auf Tonoberflächen befindet, ist ein Hydrolysenprozeß, der entweder direkt oder durch eine Umlagerungsstufe vor sich geht.Die Geschwindigkeit und der Mechanismus der Degradation hängt von der Natur des Tones und der Kationen und des Tones Hydrationszustand ab.Ein Mechanismus für die Parathiondegradation an den Adsorptionsplätzen auf Tonoberflächen, in Abwesenheit einer flüssigen Phase, wird vorgeschlagen.

Résumé

Résumé

La dégradation catalysée par adsorption de parathion sur des surfaces argileuses est un processus d'hydrolyse. découlant soit directement, soit d'une étape de réarrangement.La vitesse et le méchanisme de dégradation dépendent de la nature de l'argile,de son statut d'hydratation,et de son cation de saturation. Un mécanisme est proposé pour la dégradation de parathion à des sites d'adsorption sur des surfaces argileuses, sans phase liquide.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1977 Series, No. 216-E.

References

Fest, C. and Schmidt, K. J. (1973) The Chemistry of Organophosphorus Pesticides: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Gore, R. C. (1950) Infrared spectra of organic thiophosphates: Discuss. Faraday Soc. 9, 138143.CrossRefGoogle Scholar
Joiner, R. L. and Baetcke, K. P. (1974) Identification of the photoalteration products formed from parathion by ultraviolet light: J. Assoc. Off. Anal. Chem. 57, 408415.Google Scholar
Joiner, R. L., Chambers, H. W., and Baetcke, K. P. (1973) Comparative inhibition of boll weevil, golden shiner and white rat cholinesterases by selected photoalteration products of parathion: Pestic. Biochem. and Physiol. 2, 371376.CrossRefGoogle Scholar
Lichtenstein, E. P. and Schulz, K. R. (1964) The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion: J. Econ. Entomol. 57, 618627.CrossRefGoogle Scholar
Melnikov, N. N. (1971) Chemistry of Pesticides: Springer-Verlag, New York.CrossRefGoogle ScholarPubMed
Mingelgrin, U., Gerstl, Z. and Yaron, B. (1975) Pirimiphos-ethyl-clay surface interactions. Soil Sci. Soc. Amer. Proc. 39, 834837.CrossRefGoogle Scholar
Mingelgrin, U., Saltzman, S. and Yaron, B. (1977) A possible model for the surface-induced hydrolysis of organo-phosphorus pesticides on kaolinite clays. Soil Sci. Soc. Amer. J. 41, 519523.CrossRefGoogle Scholar
Mingelgrin, U., Yaziv, S. and Saltzman, S. (1978) The use of differential infrared spectroscopy in the study of the surface degradation of parathion on bentonite: (submitted for publication to Soil Sci. Soc. Amer. J.).CrossRefGoogle Scholar
Mortland, M. M. (1970) Clay-organic complexes and interactions: Adv. Agron: 22, 75117.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. U. (1967) Catalytic hydrolysis of some organic phosphate pesticides by copper (II): J. Agric. Food Chem. 15, 163167.CrossRefGoogle Scholar
Polon, J. A. and Sawyer, E. W. (1962) The use of stabilizing agents to decrease decomposition of malathion on high-sorptive carriers: J. Agric. Food Chem. 10, 244248.CrossRefGoogle Scholar
Rosenfield, C. and Van Valkenburg, W. (1965) Decomposition of (O,O-dimethyl-0-2,4,5-trichlorophenyl) phosphorothioate (Ronnel) adsorbed on bentonite and other clays: J. Agric. Food Chem. 13, 6872.CrossRefGoogle Scholar
Sahay, B. K. and Low, M. J. D. (1974) Interactions between surface hydroxyl groups and adsorbed molecules. V. Fluorobenzene adsorption on Germania: J. Colloid. Interface Sci. 48, 2031.CrossRefGoogle Scholar
Saltzman, S., Yaron, B. and Mingelgrin, U. (1974) The surface-catalyzed hydrolysis of parathion on kaolinite: Soil Sci. Soc. Amer. Proc. 38, 231234.CrossRefGoogle Scholar
Saltzman, S., Mingelgrin, U. and Yaron, B. (1976) The role of water in the hydrolysis of parathion and methyl-parathion on kaolinite: J. Agric. Food Chem. 24, 739743.CrossRefGoogle Scholar
Shainberg, I. and Otoh, H. (1968) Size and shape of montmorillonite particles saturated with Na/Ca ions (inferred from viscosity and optical measurements): Isr. J. Chem. 6, 251259.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay-organic Reactions: A. Holger, London.Google Scholar