Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T09:59:17.009Z Has data issue: false hasContentIssue false

Variation in the structural order of kaolinite in regolith as an effective indicator of REE mineralization

Published online by Cambridge University Press:  03 June 2024

Lianying Luo
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China CAS Center for Excellence in Deep Earth Science, Guangzhou, China University of Chinese Academy of Sciences, Beijing, China
Wei Tan*
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China CAS Center for Excellence in Deep Earth Science, Guangzhou, China
Xiaorong Qin
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China CAS Center for Excellence in Deep Earth Science, Guangzhou, China University of Chinese Academy of Sciences, Beijing, China
Shichao Ji
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China CAS Center for Excellence in Deep Earth Science, Guangzhou, China
Xiaoliang Liang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China CAS Center for Excellence in Deep Earth Science, Guangzhou, China University of Chinese Academy of Sciences, Beijing, China
Hongping He
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China CAS Center for Excellence in Deep Earth Science, Guangzhou, China University of Chinese Academy of Sciences, Beijing, China
*
Corresponding author: Wei Tan; Email: tanwei@gig.ac.cn

Abstract

Regolith-hosted rare earth element (REE) deposits hosted by the granitic regolith in South China provide >90% of the world’s heavy REEs. Kaolinite is one of the major carriers of REE ions in regolith. The formation and transformation of kaolinite can be affected by chemical weathering and hydrodynamic conditions, but the contribution of each factor has not been evaluated. This study systematically investigated the variation in abundance of phyllosilicate minerals and structural order of kaolinite in the Renju regolith-hosted REE deposit. The total abundance of 1:1 phyllosilicate minerals increased upwards along the profile from Section I to Section III. However, semi-quantitative analyses indicated that Section III-1 (depth at 10–16 m) featured an evident decrease in both abundance and structural order of kaolinite upward along the profile. The morphological feature and abundance of kaolinite revealed intensive kaolinite-to-halloysite transformation and kaolinite dissolution in Section III-1. This suggests that the alternating wetting and drying zone in Section III-1 provided a favorable kinetic environment for the entry of water molecules into the kaolinite interlayer and the kaolinite-to-halloysite transformation, resulting in both lower structural order and abundance of kaolinite in Section III-1. Moreover, REE ions started to be enriched from the alternating wetting and drying zone and formed high-grade ores at the lower part of the water table, due to a significant increase in pore water and decrease in the seepage velocity. Therefore, the abundance and structural order of secondary kaolinite can serve as important indicators of hydrodynamic changes in regolith, as well as the mineralization of regolith-hosted REEs.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aparicio, P., & Galan, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.CrossRefGoogle Scholar
Aparicio, P., Galán, E., & Ferrell, R.E. (2006). A new kaolinite order index based on XRD profile fitting. Clay Minerals, 41, 811817.CrossRefGoogle Scholar
Banfield, J.F., & Eggleton, R.A. (1990). Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38, 7789.CrossRefGoogle Scholar
Bao, Z.W., & Zhao, Z.H. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in south China. Ore Geology Reviews, 33, 519535.CrossRefGoogle Scholar
Bauluz, B., Mayayo, M.J., Yuste, A., & Gonzalez Lopez, J.M. (2008). Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): analysis by XRD, SEM and TEM. Clay Minerals, 43, 459475.CrossRefGoogle Scholar
Blanton, T., & Gates-Rector, S. (2019). The Powder Diffraction File: a quality materials characterization database. Powder Diffraction, 34, 352360.Google Scholar
Bobos, I., Duplay, J., Rocha, J., & Gomes, C. (2001). Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596607.CrossRefGoogle Scholar
Borst, A.M., Smith, M.P., Finch, A.A., Estrade, G., Villanova-de-Benavent, C., Nason, P., Marquis, E., Horsburgh, N.J., Goodenough, K.M., Xu, C., Kynicky, J., & Geraki, K. (2020). Adsorption of rare earth elements in regolith-hosted clay deposits. Nature Communications, 11, 4386.CrossRefGoogle ScholarPubMed
Calabrese, S., Richter, D.D. & Porporato, A. (2018). The formation of clay-enriched horizons by lessivage. Geophysical Research Letters, 45, 75887595.CrossRefGoogle Scholar
Casey, W.H., Westrich, H.R., Arnold, G.W., & Banfield, J.F. (1989). The surface chemistry of dissolving labradorite feldspar. Geochimica et Cosmochimica Acta, 53, 821832.CrossRefGoogle Scholar
Chou, L., & Wollast, R. (1984). Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor. Geochimica et Cosmochimica Acta, 48, 22052217.CrossRefGoogle Scholar
Chou, L., & Wollast, R. (1985). Steady-state kinetics and dissolution mechanisms of albite. American Journal of Science, 285, 963993.Google Scholar
Chung, F.H. (1974). Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519525.CrossRefGoogle Scholar
Churchman, G.J., & Carr, R.M. (1975). The definition and nomenclature of halloysites. Clays and Clay Minerals, 23, 382388.CrossRefGoogle Scholar
Churchman, G.J., & Gilkes, R.J. (1989). Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles. Clay Minerals, 24, 579590.Google Scholar
Churchman, G.J., Pasbakhsh, P., Lowe, D.J., & Theng, B.K.G. (2016). Unique but diverse: some observations on the formation, structure and morphology of halloysite. Clay Minerals, 51, 395416.Google Scholar
Churchman, G.J., & Theng, B.K.G. (1984). Interactions of halloysites with amides; mineralogical factors affecting complex formation. Clay Minerals, 19, 161175.Google Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C., & Theng, B.K.G. (1984). Intercalation method using formamide for differentiating halloysite form kaolinite. Clays and Clay Minerals, 32, 241248.Google Scholar
Costanzo, P.M., & Giese, R.F. (1985). Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite (10 Å). Clays and Clay Minerals, 33, 415423.CrossRefGoogle Scholar
Cuadros, J. (2012). Clay crystal-chemical adaptability and transformation mechanisms. Clay Minerals, 47, 147164.Google Scholar
Devidal, J.-L., Dandurand, J.-L., & Gout, R. (1996). Gibbs free energy of formation of kaolinite from solubility measurement in basic solution between 60 and 170°C. Geochimica et Cosmochimica Acta, 60, 553564.Google Scholar
Eggleton, R.A. & Buseck, P.R. (1980). High resolution electron microscopy of feldspar weathering. Clays and Clay Minerals, 28, 173178.Google Scholar
Fashina, B., & Deng, Y. (2021). Stacking disorder and reactivity of kaolinites. Clays and Clay Minerals, 69, 354365.Google Scholar
Fialips, C.-I., Petit, S., Decarreau, A., & Beaufort, D. (2000). Influence of synthesis pH on kaolinite ‘crystallinity’ and surface properties. Clays and Clay Minerals, 48, 173184.CrossRefGoogle Scholar
González Jesús, J., Huertas, F.J., Linares, J., & Ruiz Cruz, M.D. (2000). Textural and structural transformations of kaolinites in aqueous solutions at 200°C. Applied Clay Science, 17, 245263.CrossRefGoogle Scholar
He, H.P., Yuan, P., Guo, J.G., Zhu, J.X., & Hu, C. (2005). The influence of random defect density on the thermal stability of kaolinites. Journal of the American Ceramic Society, 88, 10171019.CrossRefGoogle Scholar
Hinckley, D.N. (1962). Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.Google Scholar
Huang, J., He, H.P., Tan, W., Liang, X.L., Ma, L.Y., Wang, Y.Y., Qin, X.R., & Zhu, J.X. (2021a). Groundwater controls REE mineralisation in the regolith of South China. Chemical Geology, 577, 120295.CrossRefGoogle Scholar
Huang, J., Tan, W., Liang, X. L., He, H.P., Ma, L.Y., Bao, Z.W., & Zhu, J.X. (2021b). REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China. Ore Geology Reviews, 134, 104172.Google Scholar
Huang, J., Tan, W., Liang, X.L., He, H.P., Ma, L.Y., Bao, Z.W., Zhu, J.X., & Zhou, Q. (2022). Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju regolith-hosted REE deposits in Guangdong Province (in Chinese). Geochimica, 51, 684695.Google Scholar
Hurst, V.J., & Kunkle, A.C. (1985). Dehydroxylation, rehydroxylation, and stability of kaolinite. Clays and Clay Minerals, 33, 114.CrossRefGoogle Scholar
Hussain, F., Wu, R.-S., & Shih, D.-S. (2022). Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D. Journal of Hydrology: Regional Studies, 39, 100988.Google Scholar
Inoue, A., Utada, M., & Hatta, T. (2012). Halloysite-to-kaolinite transformation by dissolution and recrystallization during weathering of crystalline rocks. Clay Minerals, 47, 373390.CrossRefGoogle Scholar
Ishida, D.A., Vieira-Coelho, A.C., Melfi, A.J., Lucas, Y., Camargo, J.P.B., & Montes, C.R. (2018). Influence of pedogenetic processes on the validity of kaolinite crystallinity indices: a case study of an Amazonian Ferralsol-Podzol soil system with white kaolin. Applied Clay Science, 162, 435442.Google Scholar
Joussein, E., Petit, S., Fialips, C.-I., Vieillard, P. & Righi, D. (2006). Differences in the dehydration-rehydration behavior of halloysites: new evidence and interpretations. Clays and Clay Minerals, 54, 473484.CrossRefGoogle Scholar
Jowitt, S.M., Wong, V.N.L., Wilson, S.A., & Gore, O. (2017). Critical metals in the critical zone: controls, resources and future prospectivity of regolith-hosted rare earth elements. Australian Journal of Earth Sciences, 64, 10451054.Google Scholar
Keller, W.D. (1978). Kaolinization of feldspar as displayed in scanning electron micrographs. Geology, 6, 184188.2.0.CO;2>CrossRefGoogle Scholar
Kohyama, N., Fukushima, K., & Fukami, A. (1978). Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays and Clay Minerals, 26, 2540.CrossRefGoogle Scholar
Li, M.Y.H., & Zhou, M.-F. (2020). The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. American Mineralogist, 105, 92108.CrossRefGoogle Scholar
Li, M.Y.H., & Zhou, M.-F. (2023). Physicochemical variation of clay minerals and enrichment of rare earth elements in regolith-hosted deposits: exemplification from the Bankeng deposit in south China. Clays and Clay Minerals, 71, 362376.CrossRefGoogle Scholar
Li, Y.H.M., Zhao, W.W., & Zhou, M.-F. (2017). Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model. Journal of Asian Earth Sciences, 148, 6595.CrossRefGoogle Scholar
Liétard, O. (1977). Contribution à l’étude des proprités physicochimiques cristallographiques et morphologiques des kaolins. PhD thesis, Université Institut National Polytechnique de Lorraine, Nancy, France, 345 pp.Google Scholar
Mathian, M., Bueno, G.T., Balan, E., Fritsch, E., Do Nascimento, N.R., Selo, M., & Allard, T. (2020). Kaolinite dating from Acrisol and Ferralsol: a new key to understanding the landscape evolution in NW Amazonia (Brazil). Geoderma, 370, 114354.CrossRefGoogle Scholar
McQueen, K. & Scott, K.M. (2008). Chapter 6: Rock weathering and structure of the regolith. In Scott, K.M., and Pain, C.F. (eds), Regolith Science (1st edn) (pp. 103124). CSIRO Publishing, Australia.Google Scholar
Mei, H., Jian, X., Zhang, W., Fu, H., & Zhang, S. (2021). Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation. CATENA, 203, 105368.CrossRefGoogle Scholar
Metz, V., & Ganor, J. (2001). Stirring effect on kaolinite dissolution rate. Geochimica et Cosmochimica Acta, 65, 34753490.Google Scholar
Muir, I.J., Bancroft, G.M., Shotyk, W., & Nesbitt, H.W. (1990). A SIMS and XPS study of dissolving plagioclase. Geochimica et Cosmochimica Acta, 54, 22472256.CrossRefGoogle Scholar
Ndlovu, B., Farrokhpay, S., Forbes, E., & Bradshaw, D. (2015). Characterisation of kaolinite colloidal and flow behaviour via crystallinity measurements. Powder Technology, 269, 505512.Google Scholar
Nesbitt, H.W., & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.Google Scholar
Ni, X., Zhao, Z., Li, Z., & Li, Q. (2021). The adsorptive behaviour of kaolinite to sodium dodecyl benzene sulphonate and the structural variation of kaolinite. Scientific Reports, 11, 1796.Google ScholarPubMed
Pepper, I.L., & Gentry, T.J. (2015). Chapter 4: Earth environments. In Pepper, I.L., Gerba, C.P., & Gentry, T.J. (eds), Environmental Microbiology (3rd edn) (pp. 5988). Academic Press, San Diego.Google Scholar
Pineau, M., Mathian, M., Baron, F., Rondeau, B., Le Deit, L., Allard, T., & Mangold, N. (2022). Estimating kaolinite crystallinity using near-infrared spectroscopy: Implications for its geology on Earth and Mars. American Mineralogist, 107, 14531469.CrossRefGoogle Scholar
Plançon, A., Giese, R.F., Snyder, R., Drits, V.A., & Bookin, A.S. (1989). Stacking faults in the kaolin-group minerals: defect structures of kaolinite. Clays and Clay Minerals, 37, 203210.Google Scholar
Plançon, A., & Zacharie, C. (1990). An expert system for the structural characterization of kaolinites. Clay Minerals, 25, 249260.CrossRefGoogle Scholar
Radoslovich, E.W. (1963). The cell dimensions and symmetry of layer-lattice silicates. VI. Serpentine and kaolin morphology. American Mineralogist, 48, 368378.Google Scholar
Regional Geological Survey Team of Jiangxi Geological Bureau (1976). Report of 1:200,000 regional geological survey of the Xunwu region: Anyuan [in Chinese].Google Scholar
Riesgo García, M.V., Krzemień, A., Manzanedo del Campo, M.Á., MenéndezÁlvarez, M., & Gent, M.R. (2017). Rare earth elements mining investment: it is not all about China. Resources Policy, 53, 6676.CrossRefGoogle Scholar
Sakharov, B.A., Drits, V.A., McCarty, D.K., & Walker, G.M. (2016). Modeling powder X-ray diffraction patterns of the clay minerals society kaolinite standards: KGa-1, KGa-1b, and KGa-2. Clays and Clay Minerals, 64, 314333.CrossRefGoogle Scholar
Santagata, M., & Johnston, C.T. (2022). A study of nanoconfined water in halloysite. Applied Clay Science, 221, 106467.CrossRefGoogle Scholar
Schroeder, P.A. (2018). Chapter 1: What are clays and what is the critical zone? In Schroeder, P.A. (ed), Clays in the Critical Zone (pp. 130). Cambridge University Press, Cambridge.Google Scholar
Schroeder, P.A., Austin, J.C., Thompson, A. & Richter, D.D. (2022). Mineralogical and elemental trends in regolith on historically managed sites in the southeastern United States piedmont. Clays and Clay Minerals, 70, 539554.CrossRefGoogle Scholar
Senkayi, A.L., Dixon, J.B., Hossner, L.R., Abder-Ruhman, M., & Fanning, D.S. (1984). Mineralogy and genetic relationships of tonstein, bentonite, and lignitic strata in the Eocene Yegua Formation of east-central Texas. Clays and Clay Minerals, 32, 259271.Google Scholar
Simandl, G.J. (2014). Geology and market-dependent significance of rare earth element resources. Mineralium Deposita, 49, 889904.CrossRefGoogle Scholar
Singh, B. (1996). Why does halloysite roll? – a new model. Clays and Clay Minerals, 44, 191196.CrossRefGoogle Scholar
Singh, B., & Gilkes, R.J. (1992a). An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212229.Google Scholar
Singh, B., & Gilkes, R.J. (1992b). Properties of soil kaolinites from south-western Australia. Journal of Soil Science, 43, 645667.CrossRefGoogle Scholar
Singh, B., & Mackinnon, I.D.R. (1996). Experimental transformation of kaolinite to halloysite. Clays and Clay Minerals, 44, 825834.Google Scholar
Tan, W., Qin, X.R., Liu, J.C., Michalski, J., He, H.P., Yao, Y.Z., Yang, M.J., Huang, J., Lin, X.J., Zhang, C.Q., & Liang, X.L. (2021). Visible/near infrared reflectance (VNIR) spectral features of ion-exchangeable rare earth elements hosted by clay minerals: potential use for exploration of regolith-hosted REE deposits. Applied Clay Science, 215, 106320.CrossRefGoogle Scholar
Tyagi, B., Chudasama, C.D., & Jasra, R.V. (2006). Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 273278.CrossRefGoogle ScholarPubMed
Wang, P., & Pozdniakov, S.P. (2014). A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations. Water Resources Research, 50, 22762292.CrossRefGoogle Scholar
Wang, W., Zhang, Z., Yeh, T.-c.J., Qiao, G., Wang, W., Duan, L., Huang, S.-Y., & Wen, J.-C. (2017). Flow dynamics in vadose zones with and without vegetation in an arid region. Advances in Water Resources, 106, 6879.Google Scholar
Wang, Z., & Xu, J. (2016). Characteristics and prevention measures of soil erosion in Renju rare earth mining area in northern Guangdong province [in Chinese]. Subtropical Soil and Water Conservation, 28, 5156.Google Scholar
Weng, Z., Jowitt, S.M., Mudd, G.M., & Haque, N. (2015). A detailed assessment of global rare earth element resources: opportunities and challenges. Economic Geology, 110, 19251952.CrossRefGoogle Scholar
Wieland, E., & Stumm, W. (1992). Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C. Geochimica et Cosmochimica Acta, 56, 33393355.CrossRefGoogle Scholar
Wilson, J. (2004). Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39, 233266.CrossRefGoogle Scholar
Wu, F., Fang, X., Yang, Y., Dupont-Nivet, G., Nie, J., Fluteau, F., Zhang, T., & Han, W. (2022). Reorganization of Asian climate in relation to Tibetan plateau uplift. Nature Reviews Earth & Environment, 3, 684700.CrossRefGoogle Scholar
Xu, C., Kynicky, J., Smith, M.P., Kopriva, A., Brtnicky, M., Urubek, T., Yang, Y.H., Zhao, Z., He, C., & Song, W.L. (2017). Origin of heavy rare earth mineralization in South China. Nature Communications, 8, 14598.CrossRefGoogle ScholarPubMed
Yang, D., & Xiao, G. (2011). Regional metallogenic regularities of the ion adsorption type of rare-earth deposits in Guangdong province [in Chinese]. Geology and Resources, 20, 462468.Google Scholar
Yang, M.J., Liang, X.L., Ma, L.Y., Huang, J., He, H.P., & Zhu, J.X. (2019). Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 525, 210217.Google Scholar
Zadvernyuk, H., Kadoshnikov, V., Shekhunova, S., & Remez, S. (2021). Particle size distribution and crystallinity as indicators of kaolinite genesis. Applied Clay Science, 213, 106236.Google Scholar
Zhao, X., Li, N.-B., Huizenga, J.M., Yan, S., Yang, Y.-Y., & Niu, H.-C. (2021). Rare earth element enrichment in the ion-adsorption deposits associated granites at Mesozoic extensional tectonic setting in South China. Ore Geology Reviews, 137, 104317.CrossRefGoogle Scholar
Supplementary material: File

Luo et al. supplementary material

Luo et al. supplementary material
Download Luo et al. supplementary material(File)
File 269.5 KB