Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-29T14:09:43.188Z Has data issue: false hasContentIssue false

Trajectory and magnitude of response in adults with anxiety disorders: a Bayesian hierarchical modeling meta-analysis of selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and benzodiazepines

Published online by Cambridge University Press:  25 March 2024

Eric M. Mendez
Affiliation:
Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
Jeffrey A. Mills
Affiliation:
Department of Economics, Lindner College of Business, University of Cincinnati, Cincinnati, OH, USA
Vikram Suresh
Affiliation:
Department of Economics, Lindner College of Business, University of Cincinnati, Cincinnati, OH, USA
Julia N. Stimpfl
Affiliation:
Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
Jeffrey R. Strawn*
Affiliation:
Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA Divisions of Child & Adolescent Psychiatry and Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
*
Corresponding author: Jeffrey R. Strawn; Email: strawnjr@uc.edu

Abstract

Background

How the trajectory of response to medication (and placebo response) varies among selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), benzodiazepines and across anxiety disorders is unknown.

Methods

We performed a meta-analysis using weekly symptom severity data from randomized, parallel-group, placebo-controlled trials of SSRIs, SNRIs, and benzodiazepines in adults with anxiety disorders. Response was modeled for the standardized change in anxiety using Bayesian hierarchical models.

Results

Across 122 trials (N=15,760), SSRIs, SNRIs, and benzodiazepines produced significant improvement in anxiety compared to placebo. Benzodiazepines produced faster improvement by the first week of treatment (p < 0.001). By week 8, the response for benzodiazepines and SSRIs (p = 0.103) and SNRIs (p = 0.911) did not differ nor did SSRIs and SNRIs differ (p = 0.057), although for patients with generalized anxiety disorder (GAD), the benzodiazepines produced greater improvement than SNRIs at week 8 (difference − 12.42, CrI: −25.05 to −0.78, p = 0.037). Medication response was similar across anxiety disorders except for benzodiazepines, which produced greater improvement over the first 4 weeks compared to SSRIs and SNRIs in panic disorder. For SSRIs and SNRIs, women improved more than men, and for benzodiazepines, older patients improved more compared to younger patients. Finally, placebo response plateaued by week 4 of treatment, and, at week 8, social anxiety disorder trials had lower placebo response compared to other anxiety disorders.

Conclusions

Benzodiazepines show early improvement compared to SSRIs and SNRIs. However, by week 8, all treatments yield similar results. Patient characteristics influence the improvement trajectory and magnitude, suggesting potential for personalized medication selection.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stein, MB, Sareen, J. Clinical practice. Generalized anxiety disorder. N Engl J Med. 2015;373(21):20592068. doi:10.1056/NEJMcp1502514.CrossRefGoogle ScholarPubMed
Strawn, JR, Geracioti, L, Rajdev, N, et al. Pharmacotherapy for generalized anxiety disorder in adult and pediatric patients: an evidence-based treatment review. Expert Opin Pharmacother. 2018;19(10):10571070. doi:10.1080/14656566.2018.1491966.CrossRefGoogle ScholarPubMed
Agarwal, SD, Landon, BE. Patterns in outpatient benzodiazepine prescribing in the United States. JAMA Netw Open. 2019;2(1):e187399. doi:10.1001/jamanetworkopen.2018.7399.CrossRefGoogle ScholarPubMed
Pollack, MH, Van Ameringen, M, Simon, NM, et al. A double-blind randomized controlled trial of augmentation and switch strategies for refractory social anxiety disorder. Am J Psych. 2014;171(1):44. doi:10.1176/appi.ajp.2013.12101353.CrossRefGoogle ScholarPubMed
Seedat, S, Stein, MB. Double-blind, placebo-controlled assessment of combined clonazepam with paroxetine compared with paroxetine monotherapy for generalized social anxiety disorder. J Clin Psych. 2004;65(2):244248.Google ScholarPubMed
Alonso, J, Liu, Z, Evans-Lacko, S, et al. Treatment gap for anxiety disorders is global: results of the World Mental Health Surveys in 21 countries. Depress Anxiety. 2018;35(3):195208. doi:10.1002/da.22711.CrossRefGoogle ScholarPubMed
James, SL, Abate, D, Abate, KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):17891858. doi:10.1016/S0140-6736(18)32279-7.CrossRefGoogle Scholar
Hsu, CW, Tseng, WT, Wang, LJ, et al. Comparative effectiveness of antidepressants on geriatric depression: Real-world evidence from a population-based study. J Affect Disord. 2022;296:609615. doi:10.1016/j.jad.2021.10.009.CrossRefGoogle ScholarPubMed
Gomez, AF, Barthel, AL, Hofmann, SG. Comparing the efficacy of benzodiazepines and serotonergic anti-depressants for adults with generalized anxiety disorder: a meta-analytic review. Exp Opin Pharmcother. 2018;19:883894.CrossRefGoogle ScholarPubMed
Gosmann, NP, De Abreu Costa, M, De Barros Jaeger, M, et al. Selective serotonin reuptake inhibitors, and serotonin and norepinephrine reuptake inhibitors for anxiety, obsessive-compulsive, and stress disorders: a 3-level network metaanalysis. PLoS Med. 2021;18(6):e1003664. doi:10.1371/journal.pmed.1003664.CrossRefGoogle Scholar
Jakubovski, E, Johnson, JA, Nasir, M, et al. Systematic review and meta-analysis: dose–response curve of SSRIs and SNRIs in anxiety disorders. Depress Anxiety. 2019;36(3):198212. doi:10.1002/da.22854.CrossRefGoogle ScholarPubMed
Stimpfl, J, Mills, JA, Strawn, JR Pharmacologic predictors of benzodiazepine response trajectory in anxiety disorders: a Bayesian hierarchical modeling meta-analysis. CNS Spectr. 2023;28:53. doi:10.1017/S1092852921000870.CrossRefGoogle ScholarPubMed
Stein, DJ, Baldwin, DS, Dolberg, OT, et al. Which factors predict placebo response in anxiety disorders and major depression? An analysis of placebo-controlled studies of escitalopram. J Clin Psych. 2006;67(11):17411746. doi:10.4088/JCP.v67n1111.CrossRefGoogle ScholarPubMed
Rutherford, BR, Mori, S, Sneed, JR, et al. Contribution of spontaneous improvement to placebo response in depression: a meta-analytic review. J Psychiatr Res. 2012;46:697702. doi:10.1016/j.jpsychires.2012.02.008.CrossRefGoogle ScholarPubMed
Benedetti, F, Carlino, E, Pollo, A, et al. Placebo pharmacology. Anesth Prog. 2014;20(1):8386. doi:10.1037/a0035458.Google Scholar
Dunlop, BW, Thase, ME, Wun, CC, et al. A meta-analysis of factors impacting detection of antidepressant efficacy in clinical trials: The importance of academic sites. Neuropsychopharmacology. 2012;37(13):28302836. doi:10.1038/npp.2012.153.CrossRefGoogle ScholarPubMed
Dobson, ET, Strawn, JR. Placebo response in pediatric anxiety disorders: implications for clinical trial design and interpretation. J Child Adolesc Psychopharmacol. 2016;26(8):686693. doi:10.1089/cap.2015.0192.CrossRefGoogle ScholarPubMed
Mossman, SA, Mills, JA, Walkup, JT, et al. The impact of failed antidepressant trials on outcomes in children and adolescents with anxiety and depression: a systematic review and meta-analysis. J Child Adolesc Psychopharmacol. 2021;31(4):259267. doi:10.1089/cap.2020.0195.CrossRefGoogle ScholarPubMed
Khan, A, Kolts, RL, Rapaport, MH, et al. Magnitude of placebo response and drug-placebo differences across psychiatric disorders. Psychol Med. 2005;35:743749. doi:10.1017/S0033291704003873.CrossRefGoogle ScholarPubMed
McGlothlin, AE, Viele, K. Bayesian hierarchical models. JAMA. 2018;320(22):23652366. doi:10.1001/jama.2018.17977.CrossRefGoogle ScholarPubMed
Kummer, A, Cardoso, F, Teixeira, AL. Frequency of social phobia and psychometric properties of the Liebowitz social anxiety scale in Parkinson’s disease. Mov Disorders. 2008;23(12):1739. doi:10.1002/mds.22221.CrossRefGoogle ScholarPubMed
Ge, H, Xu, K, Ghahramani, Z. Turing: a language for flexible probabilistic inference. PMLR. 2018;84:16821690.Google Scholar
Suresh, V, Mills, JA, Croarkin, PE, et al. What next? A Bayesian hierarchical modeling re-examination of treatments for adolescents with selective serotonin reuptake inhibitor-resistant depression. Depress Anxiety. 2020;37(9):926934. doi:10.1002/da.23064.CrossRefGoogle ScholarPubMed
Andrisano, C, Chiesa, A, Serretti, A. Newer antidepressants and panic disorder: a meta-analysis. Int Clin Psychopharmacol. 2013;28(1):33. doi:10.1097/YIC.0b013e32835a5d2e.CrossRefGoogle ScholarPubMed
Hedges, DW, Brown, BL, Shwalb, DA, et al. The efficacy of selective serotonin reuptake inhibitors in adult social anxiety disorder: a meta-analysis of double-blind, placebo-controlled trials. Journal of Psychopharmacology. 2007;21(1):102. doi:10.1177/0269881106065102.CrossRefGoogle ScholarPubMed
Piccoli, E, Bergamaschini, I, Molteni, L, et al. Latency to selective serotonin reuptake inhibitor vs benzodiazepine treatment in patients with panic disorder: a naturalistic study. CNS Spectr. 2023;28(1):46. doi:10.1017/S1092852921000869.CrossRefGoogle ScholarPubMed
Altamura, AC, Dell’Osso, B, D’Urso, N, et al. Duration of untreated illness as a predictor of treatment response and clinical course in generalized anxiety disorder. CNS Spectr. 2008;13(5):415. doi:10.1017/S1092852900016588.CrossRefGoogle ScholarPubMed
Katzman, MA, Bleau, P, Blier, P, et al. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. BMC Psychiatry. 2014;14(SUPPL.1):S1. doi:10.1186/1471-244X-14-S1-S1.CrossRefGoogle ScholarPubMed
Baldwin, DS, Anderson, IM, Nutt, DJ, et al. Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacology. 2014;28(5):403439. doi:10.1177/0269881114525674.CrossRefGoogle ScholarPubMed
Andrews, G, Bell, C, Boyce, P, et al. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for the treatment of panic disorder, social anxiety disorder and generalised anxiety disorder. Aust NZ J Psychiatry. 2018;52(12):1109. doi:10.1177/0004867418799453.CrossRefGoogle Scholar
Bandelow, B, Werner, AM, Kopp, I, et al. The German Guidelines for the treatment of anxiety disorders: first revision. Eur Arch Psychiatry Clin Neurosci. 2022;272(4):571. doi:10.1007/s00406-021-01324-1.CrossRefGoogle ScholarPubMed
Ogawa, Y, Takeshima, N, Hayasaka, Y, et al. Antidepressants plus benzodiazepines for adults with major depression. Cochrane Database Syst Rev. 2019;2019(6):CD001026. doi:10.1002/14651858.CD001026.pub2.Google Scholar
Benedetti, F, Carlino, E, Pollo, A. How placebos change the patient’s brain. Neuropsychopharmacology. 2011;36(1):339354. doi:10.1038/npp.2010.81.CrossRefGoogle ScholarPubMed
Lu, L, Li, H, Mills, JA, et al. Greater dynamic and lower static functional brain connectivity prospectively predict placebo response in pediatric generalized anxiety disorder. J Child Adolesc Psychopharmacol. 2020;30(10):606. doi:10.1089/cap.2020.0024.CrossRefGoogle ScholarPubMed
Rutherford, BR, Roose, SP. A model of placebo response in antidepressant clinical trials. Am J Psychiatry. 2013;170(7):723733. doi:10.1176/appi.ajp.2012.12040474.CrossRefGoogle Scholar
Rutherford, BR, Pott, E, Tandler, JM, et al. Placebo response in antipsychotic clinical trials. JAMA Psychiatry. 2014;71(12):14091421. doi:10.1001/jamapsychiatry.2014.1319.CrossRefGoogle ScholarPubMed
Sneed, JR, Rutherford, BR, Rindskopf, D, et al. Design makes a difference: a meta-analysis of antidepressant response rates in placebo-controlled versus comparator trials in late-life depression. Am J Geriatr Psychiatry. 2008;16:6573. doi:10.1097/JGP.0b013e3181256b1d.CrossRefGoogle ScholarPubMed
Strawn, JR, Dobson, ET, Mills, JA, et al. Placebo response in pediatric anxiety disorders: results from the child/adolescent anxiety multimodal study. J Child Adolesc Psychopharmacol. 2017;27(6):501. doi:10.1089/cap.2016.0198.CrossRefGoogle ScholarPubMed
Huddart, R, Hicks, JK, Ramsey, LB, et al. PharmGKB summary: sertraline pathway, pharmacokinetics. Pharmacogenet Genomics. 2020;30:26. doi:10.1097/FPC.0000000000000392.CrossRefGoogle ScholarPubMed
Rudberg, I, Hermann, M, Refsum, H, et al. Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol. 2008;64(12):11811188. doi:10.1007/s00228-008-0533-3.CrossRefGoogle ScholarPubMed
Strawn, JR, Poweleit, EA, Ramsey, LB. CYP2C19-guided escitalopram and sertraline dosing in pediatric patients: a pharmacokinetic modeling study. J Child Adolesc Psychopharmacol. 2019;29(5):340. doi:10.1089/cap.2018.0160.CrossRefGoogle ScholarPubMed
Strawn, J, Mills, J, Schroeder, H, et al. Escitalopram in adolescents with generalized anxiety disorder: a double-blind, randomized, placebo-controlled study. J Clin Psychiatry. 2020;81:20m13396.CrossRefGoogle ScholarPubMed
Jukić, MM, Haslemo, T, Molden, E, et al. Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. Am J Psychiatry. 2018;175:463. doi:10.1176/appi.ajp.2017.17050550.CrossRefGoogle ScholarPubMed
Chang, M, Tybring, G, Dahl, ML, et al. Impact of cytochrome P450 2C19 polymorphisms on citalopram/escitalopram exposure: a systematic review and meta-analysis. Clin Pharmacokinet. 2014;53(9):801811. doi:10.1007/s40262-014-0162-1.CrossRefGoogle ScholarPubMed
Altamura, AC, Moro, AR, Percudani, M. Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet. 1994;26(3):201214. doi:10.2165/00003088-199426030-00004.CrossRefGoogle ScholarPubMed
LLerena, A, Dorado, P, Berecz, R, et al. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol. 2004;59(12):869. doi:10.1007/s00228-003-0707-y.Google ScholarPubMed
de Vries, YA, Roest, AM, Burgerhof, JGM, et al. Initial severity and antidepressant efficacy for anxiety disorders, obsessive-compulsive disorder, and posttraumatic stress disorder: an individual patient data meta-analysis. Depress Anxiety. 2018;35(6):515. doi:10.1002/da.22737.CrossRefGoogle ScholarPubMed
Versiani, M, Nardi, AE, Mundim, FD, et al. Pharmacotherapy of social phobia. a controlled study with moclobemide and phenelzine. Br J Psychiatry. 1992;161:353. doi:10.1192/bjp.161.3.353.CrossRefGoogle ScholarPubMed
Quitkin, FM, Mcgrath, PJ, Stewart, JW, et al. Atypical depression, panic attacks, and response to imipramine and phenelzine: a replication. Arch Gen Psychiatry. 1990;47(10):935. doi:10.1001/archpsyc.1990.01810220051006.CrossRefGoogle ScholarPubMed
Van Den Eynde, V, Abdelmoemin, WR, Abraham, MM, et al. The prescriber’s guide to classic MAO inhibitors (phenelzine, tranylcypromine, isocarboxazid) for treatment-resistant depression. CNS Spectr. 2023;28(4):427. doi:10.1017/S1092852922000906CrossRefGoogle Scholar
Bodkin, JA, Dunlop, BW. Moving on with monoamine oxidase inhibitors. Focus (Madison). 2021;19(1):50. doi:10.1176/appi.focus.20200046.CrossRefGoogle ScholarPubMed