Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T10:26:37.103Z Has data issue: false hasContentIssue false

Okounkov bodies of filtered linear series

Published online by Cambridge University Press:  04 May 2011

Sébastien Boucksom
Affiliation:
IMJ Université Pierre et Marie Curie, Case 247, 4 place Jussieu, 75252 Paris Cedex, France (email: boucksom@math.jussieu.fr)
Huayi Chen
Affiliation:
Institut de Mathématiques de Jussieu, IMJ Université Paris 7, 175 rue du Chevaleret, 75013 Paris, France (email: chenhuayi@math.jussieu.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We associate to certain filtrations of a graded linear series of a big line bundle a concave function on its Okounkov body, whose law with respect to the Lebesgue measure describes the asymptotic distribution of the jumps of the filtration. As a consequence, we obtain a Fujita-type approximation theorem in this general filtered setting. We then specialize these results to the filtrations by minima in the usual context of Arakelov geometry (and for more general adelically normed graded linear series), thereby obtaining in a simple way a natural construction of an arithmetic Okounkov body, the existence of the arithmetic volume as a limit and an arithmetic Fujita approximation theorem for adelically normed graded linear series. We also obtain an easy proof of the existence of the sectional capacity previously obtained by Lau, Rumely and Varley.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AB95]Abbes, A. and Bouche, T., Théorème de Hilbert–Samuel arithmétique, Ann. Inst. Fourier 45 (1995), 375401.CrossRefGoogle Scholar
[BG06]Bombieri, E. and Gubler, W., Heights in Diophantine geometry, New Mathematical Monographs, vol. 4 (Cambridge University Press, Cambridge, 2006).Google Scholar
[Bos96]Bost, J.-B., Périodes et isogénies des variétés abéliennes sur les corps de nombres (d’après D. Masser et G. Wüstholz), Séminaire Bourbaki Vol. 1994/1995, Astérisque 237 (1996), 115161, exp. no. 795, 4.Google Scholar
[BPS09]Burgos Gil, J., Philippon, P. and Sombra, M., Height of toric subschemes and Legendre–Fenchel duality, C.R.A.S. Paris 347 (2009), 589594.Google Scholar
[Cha02]Chambert-Loir, A., Théorèmes d’algébricité en géométrie diophantienne (d’après J.-B. Bost, Y. André et D. & G. Chudnovsky). Séminaire Bourbaki Vol. 2000/2001, Astérisque 282 (2002), 175209, exp. no. 886, viii.Google Scholar
[Che10a]Chen, H., Arithmetic Fujita approximation, Ann. de l’ENS 43 (2010), 555578.Google Scholar
[Che10b]Chen, H., Convergence of Harder–Narasimhan polygons, Mém. Soc. Math. Fr. 120 (2010).Google Scholar
[Gau08]Gaudron, E., Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Sem. Mat. Univ. Padova 119 (2008), 2195.CrossRefGoogle Scholar
[Gau09]Gaudron, E., Géométrie des nombres et lemme de Siegel généralisés, Manuscripta Math. 130 (2009), 159182.CrossRefGoogle Scholar
[GS91]Gillet, H. and Soulé, C., On the number of lattice points in convex symmetric bodies and their duals, Israel J. Math. 74 (1991), 347357.Google Scholar
[GS92]Gillet, H. and Soulé, C., An arithmetic Riemann–Roch theorem, Invent. Math. 110 (1992), 473543.Google Scholar
[HS00]Hindry, M. and Silverman, J., Diophantine geometry. An introduction, Graduate Texts in Mathematics, vol. 201 (Springer, New York, 2000).CrossRefGoogle Scholar
[KK08]Kaveh, K. and Khovanskii, A., Convex bodies and algebraic equations on affine varieties, Preprint (2008), arXiv:0804.4095.Google Scholar
[KK09]Kaveh, K. and Khovanskii, A., Newton convex bodies, semigroups of integral points, graded algebras and intersection theory, Preprint (2009), arXiv:0904.3350.Google Scholar
[Kho93]Khovanskii, A., Newton polyhedron, Hilbert polynomial and sums of finite sets, Funct. Anal. Appl. 26 (1993), 331348.Google Scholar
[LM09]Lazarsfeld, R. K. and Mustaţǎ, M., Convex bodies associated to linear series, Ann. de l’ENS 42 (2009), 783835.Google Scholar
[Mor09a]Moriwaki, A., Estimation of arithmetic linear series, Preprint (2009), arXiv:0902.1357.Google Scholar
[Mor09b]Moriwaki, A., Continuity of volumes on arithmetic varieties, J. Algebraic Geom. 18 (2009), 407457.Google Scholar
[Ok96]Okounkov, A., Brunn–Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 405411.CrossRefGoogle Scholar
[RLV00]Rumely, R., Lau, C. F. and Varley, R., Existence of the sectional capacity, Mem. Amer. Math. Soc. 145 (2000).Google Scholar
[WN09]Witt Nyström, D., Transforming metrics on a line bundle to the Okounkov body, Preprint (2009), arXiv:0903.5167.Google Scholar
[Yua09a]Yuan, X., On volumes of arithmetic line bundles II, Preprint (2009), arXiv:0909.3680.Google Scholar
[Yua09b]Yuan, X., On volumes of arithmetic line bundles, Compositio Math. 145 (2009), 14471464.Google Scholar
[Zha95a]Zhang, S., Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), 187221.CrossRefGoogle Scholar
[Zha95b]Zhang, S., Small points and adelic metrics, J. Algebraic Geom. 4 (1995), 281300.Google Scholar