Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T07:36:28.749Z Has data issue: false hasContentIssue false

Prenatal cocaine exposure differentially affects stress responses in girls and boys: Associations with future substance use

Published online by Cambridge University Press:  18 July 2014

Tara M. Chaplin*
Affiliation:
George Mason University
Kari Jeanne Visconti
Affiliation:
George Mason University
Peter J. Molfese
Affiliation:
Yale University
Elizabeth J. Susman
Affiliation:
Pennsylvania State University
Laura Cousino Klein
Affiliation:
Pennsylvania State University
Rajita Sinha
Affiliation:
Yale University School of Medicine
Linda C. Mayes
Affiliation:
Yale University School of Medicine
*
Address correspondence and reprint requests to: Tara M. Chaplin, Department of Psychology, George Mason University, 4400 University Drive, MSN 3F5, Fairfax, VA 22030; E-mail: tchaplin@gmu.edu.

Abstract

Prenatal cocaine exposure may affect developing stress response systems in youth, potentially creating risk for substance use in adolescence. Further, pathways from prenatal risk to future substance use may differ for girls versus boys. The present longitudinal study examined multiple biobehavioral measures, including heart rate, blood pressure, emotion, and salivary cortisol and salivary alpha amylase (sAA), in response to a stressor in 193 low-income 14- to 17-year-olds, half of whom were prenatally cocaine exposed (PCE). Youth's lifetime substance use was assessed with self-report, interview, and urine toxicology/breathalyzer at Time 1 and at Time 2 (6–12 months later). PCE × Gender interactions were found predicting anxiety, anger, and sadness responses to the stressor, with PCE girls showing heightened responses as compared to PCE boys on these indicators. Stress Response × Gender interactions were found predicting Time 2 substance use in youth (controlling for Time 1 use) for sAA and sadness; for girls, heightened sadness responses predicted substance use, but for boys, dampened sAA responses predicted substance use. Findings suggest distinct biobehavioral stress response risk profiles for boys and girls, with heightened arousal for girls and blunted arousal for boys associated with prenatal risk and future substance use outcomes.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidin, R. R. (1990). Parenting Stress Index (PSI) manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Adinoff, B., Junghanns, K., Kiefer, F., & Krishnan-Sarin, S. (2005). Suppression of the HPA axis stress-response: Implications for relapse. Alcoholism Clinical and Experimental Research, 29, 13511355. doi:10.1097/01.ALC.0000176356.97620.84Google Scholar
Amaro, H., Blake, S. M., Schwartz, P. M., & Flinchbaugh, L. J. (2001). Developing theory-based substance abuse prevention programs for young adolescent girls. Journal of Early Adolescence, 21, 256293. doi:10.1177/0272431601021003002Google Scholar
Anderson, S. L., & Teicher, M. H. (2009). Desperately driven and no brakes: Developmental stress exposure and subsequent risk for substance abuse. Neuroscience & Biobehavioral Reviews, 33, 516524. doi:10.1016/j.neubiorev.2008.09.009CrossRefGoogle Scholar
Back, S. E., Brady, K. T., & Jackson, J. L., Salstrom, S., & Zinzow, H. (2005). Gender differences in stress reactivity among cocaine-dependent individuals. Psychopharmacology, 180, 169176. doi:10.1007/s00213-004-2129-7Google Scholar
Bada, H. S., Das, A., Bauer, C. R., Shankaran, S., Lester, B., LaGasse, L., et al. (2007). Impact of prenatal cocaine exposure on child behavior problems through school age. Pediatrics, 119, e348e359. doi:10.1542/peds.2006-1404CrossRefGoogle ScholarPubMed
Bandura, A. (1969). Principles of behavior modification. New York: Holt, Rinehart & Winston.Google Scholar
Baum, A., Grunberg, N. E., & Singer, J. E. (1992). Biochemical measurement in the study of emotion. Psychological Science, 3, 5660. doi:10.1111/j.1467-9280.1992.tb00257.xGoogle Scholar
Beck, A. T., & Steer, R. A. (1984). Internal consistencies of the original and revised Beck Depression Inventory. Journal of Clinical Psychology, 40, 13651367. doi:10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Behnke, M., Eyler, F. D., Warner, T. D., Garvan, C. W., Hou, W., & Wobie, K. (2006). Outcome from a prospective, longitudinal study of prenatal cocaine use: Preschool development at 3 years of age. Journal of Pediatric Psychology, 31, 4149. doi:10.1093/jpepsy/jsj027Google Scholar
Bendersky, M., Bennett, D., & Lewis, M. (2006). Aggression at age 5 as a function of prenatal exposure to cocaine, gender, and environmental risk. Journal of Pediatric Psychology, 31, 7184. doi:10.1093/jpepsy/jsj025Google Scholar
Bennett, D., Bendersky, M., & Lewis, M. (2007). Preadolescent health risk behavior as a function of prenatal cocaine exposure and gender. Journal of Developmental and Behavioral Pediatrics, 28, 467472. doi:10.1097/DBP.0b013e31811320d8Google Scholar
Blumberg, S., & Izard, C. E. (1985). Affective and cognitive characteristics of depression in 10- and 11-year-old children. Journal Personality and Social Psychology, 49, 194202. doi:10.1037//0022-3514.49.1.194CrossRefGoogle ScholarPubMed
Brener, N. D., Kann, L., McManus, T., Kinchen, S. A., Sundberg, E. C., & Ross, J. G. (2002). Reliability of the 1999 Youth Risk Behavior Survey Questionnaire. Journal of Adolescent Health, 31, 336342. doi:10.1016/s1054-139x(02)00339-7Google Scholar
Brody, L. R. (1999). Gender, emotion, and the family. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Brook, J. S., Balka, E. B., Ning, Y., & Brook, D. W. (2007). Trajectories of cigarette smoking among African Americans and Puerto Ricans from adolescence to young adulthood: Associations with dependence on alcohol and illegal drugs. American Journal on Addictions, 16, 195201. doi:10.1080/10550490701375244Google Scholar
Brook, J. S., Brook, D. W., Gordon, A. S., Whiteman, M., & Cohen, P. (1990). The psychosocial etiology of adolescent drug use: A family interactional approach. Genetic, Social, and General Psychology Monographs, 116, 111267. PMID: 2376323Google Scholar
Brooks-Gunn, J., McCarton, C., & Hawley, T. (1994). Effects of in utero drug exposure on children's development: Review and recommendations. Archives of Pediatric and Adolescent Medicine, 148, 3339. doi:10.1001/archpedi.1994.02170010035007Google Scholar
Buske-Kirschbaum, A., Jobst, S., Wustmans, A., Kirschbaum, C., Kirsh, F., Rauh, W., et al. (1997). Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosomatic Medicine, 59, 419426.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126. doi:10.1196/annals.1440.010Google Scholar
Chambers, A. R., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160, 10411052. doi:10.1176/appi.ajp.160.6.1041Google Scholar
Chaplin, T. M. (2006). Anger, happiness, and sadness: Associations with depressive symptoms in late adolescence. Journal of Youth and Adolescence, 35, 977986. doi:10.1007/s10964-006-9033-xGoogle Scholar
Chaplin, T. M., & Aldao, A. (2013). Gender differences in emotion expression in children: A meta-analytic review. Psychological Bulletin, 139, 735765. doi:10.1037/a0030737.Google Scholar
Chaplin, T. M., Casey, J., Sinha, R., & Mayes, L. C., (2010). Gender differences in caregiver emotion socialization of low income toddlers. New Directions for Child and Adolescent Development, 128, 1127. doi:10.1002/cd.266, PMID: 20552657.Google Scholar
Chaplin, T. M., & Cole, P. M. (2005). The role of emotion regulation in the development of psychopathology. In Hankin, B. L. & Abela, J. R. Z. (Eds.), Development of psychopathology: A vulnerability-stress perspective (pp. 4974). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Chaplin, T. M., Fahy, T., Sinha, R., & Mayes, L. C. (2009). Emotional arousal and regulation in cocaine exposed toddlers: Implications for behavior problems across a three-year follow-up. Neurotoxicology and Teratology, 31, 275282. doi:10.1016/j.ntt.2009.05.002Google Scholar
Chaplin, T. M., Freiburger, M. B., Mayes, L. C., & Sinha, R. (2010). Prenatal cocaine exposure, gender, and adolescent stress response: A prospective longitudinal study. Neurotoxicology and Teratology, 32, 595604. doi:10.1542/peds.2006-1840CrossRefGoogle ScholarPubMed
Chaplin, T. M., Sinha, R., Simmons, J., Healy, S., Mayes, L. C., Hommer, R. E., et al. (2012). Parent–adolescent conflict interactions and adolescent alcohol use. Addictive Behaviors, 37, 605612. doi:10.1016/j.addbeh.2012.01.004Google Scholar
Chassin, L., Pitts, S. C., & Prost, J. (2001). Binge drinking trajectories from adolescence to emerging adulthood in a high-risk sample: Predictors and substance abuse outcomes. Journal of Consulting and Clinical Psychology, 70, 6778. doi:10.1037/0022-006X.70.1.67Google Scholar
Chatterton, R. T., Vogelsong, K. M., Lu, Y., Ellman, A. B., & Hudgens, G. A. (1996). Salivary α-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16, 433448. doi:10.1196/annals.1384.008Google Scholar
Crews, F. T., Braun, C. J., Hoplight, B., Switzer, R. C., & Knapp, D. J. (2000). Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcoholism: Clinical and Experimental Research, 24, 17121723. doi:10.1111/j.1530-0277.2000.tb01973.xGoogle Scholar
Delaney-Black, V., Chiodo, L. M., Hannigan, J. H., Greenwald, M. K., Janisse, J., Patterson, G., et al. (2011). Prenatal and postnatal cocaine exposure predicts teen cocaine use. Neurotoxicology and Teratology, 33, 110119. doi:10.1016/j.ntt.2010.06.011Google Scholar
Dennis, T., Bendersky, M., Ramsay, D., & Lewis, M. (2006). Reactivity and regulation in children prenatally exposed to cocaine. Developmental Psychology, 42, 688697. doi:10.1037/0012-1649.42.4.688Google Scholar
Dorn, L. D., Campo, J. C., Thato, S., Dahl, R. E., Lewin, D., Chandra, R., et al. (2003). Psychological comorbidity and stress reactivity in children and adolescents with recurrent abdominal pain and anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 6675. doi:10.1097/00004583-200301000-00012Google Scholar
Dow-Edwards, D. (2011). Translational issues for prenatal cocaine studies and the role of environment. Neurotoxicology and Teratology, 33, 916. doi:10.1016/j.ntt.2010.06.007Google Scholar
Dubow, E. F., Tisak, J., Causey, D., Hryshko, A., & Reid, G. (1991). A two-year longitudinal study of stressful life events, social support, and problem-solving skills: Contributions to children's adjustment. Child Development, 62, 583599. doi:10.1111/j.1467-8624.1991.tb01554.xCrossRefGoogle Scholar
Duncan, S., Strycker, L., & Duncan, T. (2012). Alcohol use of African Americans and Whites from ages 9–20: Descriptive results from a longitudinal study. Journal of Ethnicity in Substance Abuse, 11, 214225. doi:10.1080/15332640.2012.701550Google Scholar
Eiden, R. D., Stevens, A., Schuetze, P., & Dombkowski, L. E. (2006). A conceptual model for maternal behavior among polydrug cocaine-using mothers: The role of postnatal cocaine use and maternal depression. Psychology of Addictive Behaviors, 20, 110. doi:10.1037/0893-164X.20.1.1Google Scholar
Eiden, R. D., Veira, Y., & Granger, D. A. (2009). Prenatal cocaine exposure and infant cortisol reactivity. Child Development, 80, 528543. doi:10.1111/j.1467-8624.2009.01277.xGoogle Scholar
Elkind, D., & Bowen, R. (1979). Imaginary audience behavior in children and adolescents. Developmental Psychology, 15, 3844. doi:10.1037/0012-1649.15.1.38Google Scholar
Enders, C. K. (2010). Applied missing data analysis. New York: Guildford Press.Google Scholar
Fisher, P. A., Kim, H. K., Bruce, J., & Pears, K. C. (2012). Cumulative effects of prenatal substance exposure and early adversity on foster children's HPA-axis. International Journal of Behavioral Development, 36, 2935. doi:10.1177/0165025411406863Google Scholar
Fox, H. C., Hong, K. A., Siedlarz, K, & Sinha, R. (2008). Enhanced sensitivity to stress and drug/alcohol craving in abstinent cocaine-dependent individuals compared to social drinkers. Neuropsychopharmacology, 33, 796805. doi:10.1038/sj.npp.1301470Google Scholar
Frank, D. A., Augustyn, M., Knight, W. G., Pell, T., & Zuckerman, B. (2001). Growth, development, and behavior in early childhood following prenatal cocaine exposure: A systematic review. Journal of the American Medical Association, 285, 16131625. doi:10.1001/jama.285.12.1613Google Scholar
Frank, D. A., Rose-Jacobs, R., Crooks, D., Cabral, H. J., Gerteis, J., Hacker, K. A., et al. (2011). Adolescent initiation of licit and illicit substance use: Impact of intrauterine exposures and post-natal exposure to violence. Neurotoxicology and Teratology, 33, 100109. doi:10.1016/j.ntt.2010.06.002Google Scholar
Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2006). Asymmetry between salivary cortisol and a-amylase reactivity to stress: Relation to aggressive behavior in adolescents. Psychoneuroendocrinology, 31, 976987. doi:10.1016/j.psyneuen.2006.05.010Google Scholar
Granger, D. A., Kivlighan, K. T., Blair, C., El-Sheikh, M., Mize, J., Lisonbee, J. A., et al. (2006). Integrating the measurement of salivary alpha-amylase into studies of child health, development, and social relationships. Journal of Personal and Social Relationships, 23, 267290. doi:10.1177/0265407506062479CrossRefGoogle Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538 doi:10.1017/S0954579401003066Google Scholar
Haskett, M. E., Ahern, L. S., Ward, C. S., & Allaire, J. C. (2006). Factor structure and validity of the Parenting Stress Index—Short form. Journal of Clinical Child and Adolescent Psychology, 35, 302312. doi:10.1207/s15374424jccp3502_14CrossRefGoogle ScholarPubMed
Hastings, P. D., Zahn-Waxler, C., & Usher, B. A. (2007). Cardiovascular and affective responses to social stress in adolescents with internalizing and externalizing problems. International Journal of Behavioral Development, 31, 7787. doi:10.1177/0165025407073575Google Scholar
Hawkins, J. D., Catalano, R. F., & Miller, J. Y. (1992). Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: Implications for substance abuse prevention. Psychological Bulletin, 112, 64105. doi:10.1037/0033-2909.112.1.64Google Scholar
Hibel, L. C., Granger, D. A., Kivlighan, K. T., Blair, C., & Family Life Project Investigators. (2006). Individual differences in salivary cortisol: Associations with common over-the-counter and prescription medication status in infants and their mothers. Hormones and Behavior, 50, 293300. doi:10.1016/j.yhbeh.2006.03.014CrossRefGoogle ScholarPubMed
Huizink, A. C., Ferdinand, R. F., Ormel, J., & Verhulst, F. C. (2006). Hypothalamic-pituitary-adrenal axis activity and early onset of cannabis use. Addiction, 101, 15811588. doi:10.1111/j.1360-0443.2006.01570.xGoogle Scholar
Huizink, A. C., Greaves-Lord, K., Oldhinkel, A. J., Ormel, J., & Verhulst, F. C. (2009). Hypothalamic–pituitary–adrenal axis and smoking and drinking onset among adolescents: The longitudinal cohort Tracking Adolescents' Lives Survey (TRAILS). Addiction, 104, 19271936. doi:10.1111/j.1360-0443.2009.02685.xGoogle Scholar
Izard, C. E. (1972). Patterns of emotions: A new analysis of anxiety and depression. New York: Academic Press.Google Scholar
Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2001). Monitoring the Future: National results on adolescent drug use: Overview of key findings, 2002. Ann Arbor, MI: University of Michigan, Institute for Social Research.Google Scholar
Kajantie, E., & Phillips, D. I. W. (2005). The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology, 3, 151178. doi:10.1016/j.psyneuen.2005.07.002Google Scholar
Kaminer, Y., Bukstein, O. G., & Tarter, R. (1991). The Teen-Addiction Severity Index: Rationale and reliability. International Journal of Addiction, 26, 219226. doi:10.3109/10826089109053184Google Scholar
Kandel, D. B., Griesler, P. C., & Schaffran, C. (2009). Educational attainment and smoking among women: Risk factors and consequences for offspring. Drug and Alcohol Dependence, 104, S24S33. doi:10.1016/j.drugalcdep.2008.12.005Google Scholar
Kandel, D. B., Yamaguchi, K., & Chen, K. (1992). Stages of progression in drug involvement from adolescence to adulthood: Further evidence for the gateway theory. Journal of Studies on Alcohol, 53, 447457.Google Scholar
Keenan, K., & Hipwell, A. E. (2005). Preadolescent clues to understanding depression in girls. Clinical Child and Family Psychology Review, 8, 89105. doi:10.1007/s10567-005-4750-3Google Scholar
Kertes, D. A., & Gunnar, M. R. (2004). Evening activities as a potential confound in research on the adrenocortical system in children. Child Development, 75, 193204. doi:10.1111/j.1467-8624.2004.00663.xGoogle Scholar
Khantzian, E. J. (1985). The self-medication hypothesis of substance use disorders: A reconsideration and recent applications. Harvard Review of Psychiatry, 4, 10673229. doi:10.3109/10673229709030550Google Scholar
Kirschbaum, C., Kudielka, B. M., Gaab, J., Schommer, N. C, & Hellhammer, D. H. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus–pituitary–adrenal axis. Psychosomatic Medicine, 61, 154162. doi:0033-3174/99/6102-0154Google Scholar
Kirschbaum, C., Wust, S., & Hellhammer, D. H. (1992). Consistent sex differences in cortisol responses to psychological stress. Psychosomatic Medicine, 54, 648657. PMID: 1454958CrossRefGoogle ScholarPubMed
Klein, L. C., Bennett, J. M., Whetzel, C. A., Granger, D. A., & Ritter, F. E. (2010). Effects of caffeine and stress on salivary α-amylase in young men. Human Psychopharmacology: Clinical and Experimental, 25, 359367. doi:10.1002/hup.1126Google Scholar
Klein, L. C., & Corwin, E. J. (2002). Seeing the unexpected: How sex differences in stress responses may provide a new perspective on the manifestation of psychiatric disorders. Current Psychiatry Reports, 4, 441448. doi:10.1007/s11920-002-0072-zGoogle Scholar
Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13, 695719. doi:10.1017/S0954579401003157Google Scholar
Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). Differential heart rate reactivity and recovery after psychosocial stress (TSST) in healthy children, younger adults, and elderly adults: The impact of age and gender. International Journal of Behavioral Medicine, 2, 116121. doi:10.1207/s15327558ijbm1102_8Google Scholar
Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis responses to stress: A review. Biological Psychology, 69, 113132. doi:10.1016/j.biopsycho.2004.11.009Google Scholar
Lester, B. M., LaGasse, L. L., Shankaran, S., Bada, H. S., Bauer, C. R., Lin, R., et al. (2010). Prenatal cocaine exposure related to cortisol stress reactivity in 11-year-old children. Journal of Pediatrics, 157, 288295. doi:10.1016/j.jpeds.2010.02.039Google Scholar
Li, C. R., Kosten, T. R., & Sinha, R. (2005). Sex differences in brain activation during stress imagery in abstinent cocaine users: A functional magnetic resonance imaging study. Biological Psychiatry, 57, 487494. doi:10.1016/j.biopsych.2004.11.048Google Scholar
Little, R. J. A., & Rubin, D. (2002). Statistical analyses with missing data (2nd. ed.). New York: Wiley.CrossRefGoogle Scholar
Littman, B., & Parmelee, A. H. (1974). Manual for Obstetric Complications, Infant Studies Project. Los Angeles: University of California–Los Angeles, School of Medicine, Department of Pediatrics.Google Scholar
Mayes, L. C. (1999). Developing brain and in utero cocaine exposure: Effects on neural ontogeny. Developmental Psychopathology, 11, 685714.Google Scholar
Mayes, L. C. (2002). A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicology and Teratology, 24, 385395. doi:10.1016/S0892-0362(02)00200-3Google Scholar
Mayes, L. C., Bornstein, M. H., Chawarska, K., Haynes, O. M., & Granger, R. H. (1996). Impaired regulation of arousal in 3-month-old infants exposed prenatally to cocaine and other drugs. Development and Psychopathology, 8, 2942.Google Scholar
McLellan, A. T., Luborsky, L., O'Brien, C. P., & Woody, G. E. (1980). An improved evaluation instrument for substance abuse patients: The Addiction Severity Index. Journal of Nervous and Mental Diseases, 168, 2633. doi:10.1097/00005053-198001000-00006Google Scholar
Miller, P., & Sperry, L. L. (1987). The socialization of anger and aggression. Merrill–Palmer Quarterly, 33, 131.Google Scholar
Moss, H. B., Vanyukov, M. M., & Martin, C. S. (1995). Salivary cortisol responses and the risk for substance abuse in prepubertal boys. Biological Psychiatry, 38, 547555. doi:10.1016/0006-3223(94)00382-DCrossRefGoogle ScholarPubMed
Moss, H. B., Vanyukov, M. M., Yao, J. K., & Kirillova, G. P. (1999). Salivary cortisol responses in prepubertal boys: The effects of parental abuse and association with drug use behavior during adolescence. Biological Psychiatry, 45, 12931299. doi:10.1016/S0006-3223(98)00216-9Google Scholar
National Institute on Drug Abuse. (2010). Strategic plan (NIH Publication No. 10-6119). Washington, DC: Author.Google Scholar
Nolen-Hoeksema, S. (2004). Gender differences in risk factors and consequences for alcohol use and problems. Clinical Psychology Review, 24, 9811010. doi:10.1016/j.cpr.2004.08.003Google Scholar
Nolen-Hoeksema, S., & Girgus, J. S. (1994). The emergence of gender differences in depression during adolescence. Psychological Bulletin, 115, 424443. doi:10.1037/0033-2909.115.3.424CrossRefGoogle ScholarPubMed
Poklis, A. (1987). Evaluation of TDx cocaine metabolite assay. Journal of Analytical Toxicology, 11, 228230. doi:10.1093/jat/11.5.228Google Scholar
Raine, A., Venables, P. H., & Mednick, S. A. (1997). Low resting heart rate at age 3 years predisposes to aggression at age 11 years: Evidence from the Mauritius child health project. Journal of the Academy of Child & Adolescent Psychiatry, 36, 14571465. doi:10.1097/00004583-199710000-00029Google Scholar
Rao, U., Hammen, C. L., & Poland, R. E. (2009). Mechanisms underlying the comorbidity between depressive and addictive disorders in adolescents: Interactions between stress and HPA activity. American Journal of Psychiatry, 166, 361369. doi:10.1176/appi.ajp.2008.08030412Google Scholar
Rocha, B. A., Mead, A. N., & Kosofsky, B. E. (2002). Increased vulnerability to self-administer cocaine in mice prenatally exposed to cocaine. Psychopharmacology, 163, 221229. doi:10.1007/s00213-002-1140-0Google Scholar
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.Google Scholar
Rudolph, K. D., Troop-Gordon, W., & Granger, D. A. (2010): Peer victimization and aggression: Moderation by individual differences in salivary cortisol and alpha-amylase. Journal of Abnormal Child Psychology, 38, 843856. doi:10.1007/s10802-010-9412-3Google Scholar
Sheras, P. L., & Abidin, R. R. (1999). Stress Index for Parents of Adolescents (SIPA) manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Sinha, R. (2001). How does stress increase risk of drug abuse and relapse? Psychopharmacology, 158, 343359. doi:10.1007/s002130100917Google Scholar
Sinha, R., Fox, H. C., Hong, K. A., Bergquist, K., Bhagwagar, Z., & Siedlarz, K. M. (2009). Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology, 34, 11981208. doi:10.1038/npp.2008.78Google Scholar
Sinha, R., Garcia, M., Paliwal, P., Kreek, M. J., & Rounsaville, B. J. (2006) Stress-induced cocaine craving and hypothalamic–pituitary–adrenal responses are predictive of cocaine relapse outcomes. Archives of General Psychiatry, 63, 324331. doi:10.1001/archpsyc.63.3.324Google Scholar
Spear, L. (2007). The developing brain and adolescent-typical behavior patterns. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain: Integrating brain and prevention science (pp. 931). New York: Oxford University Press.Google Scholar
Steinberg, L. (2004). Risk taking in adolescence: What changes, and why? New York Academy of Sciences, 1021, 5158. doi:10.1196/annals.1308.005CrossRefGoogle ScholarPubMed
Strahler, J., Mueller, A., Rosenloecher, F., Kirschbaum, C., & Rohleder, N. (2010). Salivary alpha-amylase stress reactivity across different age groups. Psychophysiology, 47, 587595. doi:10.1111/j.1469-8986.2009.00957.xGoogle Scholar
Susman, E. J. (1997). Modeling developmental complexity in adolescence: Hormones and behavior in context. Journal of Research on Adolescence, 7, 283306. doi:10.1207/s15327795jra0703_3Google Scholar
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience & Biobehavioral Reviews, 30, 376389. doi:10.1016/j.neubiorev.2005.08.002Google Scholar
Susman, E. J., Dockray, S., Granger, D. A., Bladesa, K. T., Randazzo, W., Heaton, J. A., et al. (2010). Cortisol and alpha amylase reactivity and timing of puberty: Vulnerabilities for antisocial behaviour in young adolescents. Psychoneuroendocrinology, 35, 557569. doi:10.1016/j.psyneuen.2009.09.004Google Scholar
Susman, E. J., Dockray, S., Schiefelbein, V. L., Herwehe, S., Heaton, J. A., & Dorn, L. D. (2007). Morningness/eveningness, morning-to-afternoon cortisol ratio, and antisocial behavior problems during puberty. Developmental Psychology, 43, 811822. doi:10.1037/0012-1649.43.4.811Google Scholar
Tarter, R., Vanyukov, M., Giancola, P., Dawes, M., Blackson, T., Mezzich, A., et al. (1999). Etiology of early age onset substance use disorder: A maturational perspective. Development and Psychopathology, 11, 657683. doi:10.1017/S0954579499002266Google Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., & Updegraff, J. A. (2000). Female responses to stress: Tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411429. doi:10.1037/0033-295X.107.3.411Google Scholar
Tronick, E., & Beeghley, M. (1999). Prenatal cocaine exposure, child development, and the compromising effects of cumulative risk. Clinics of Perinatology, 26, 151171. PMID: 10214547Google Scholar
van Leeuwen, A. P., Creemers, H. E., Greaves-Lord, K., Verhulst, F. C., Ormel, J., & Huizink, A. C. (2011). Hypothalamic–pituitary–adrenal axis reactivity to social stress and adolescent cannabis use: The TRAILS study. Addiction, 106, 14841492. doi:10.1111/j.1360-0443.2011.03448.xGoogle Scholar
Welberg, L. A. M., & Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of the brain. Journal of Neuroendocrinology, 13, 113128. doi:10.1111/j.1365-2826.2001.00601.xGoogle Scholar
White, A. M., Ghia, A. J., Levin, E. D., & Swartzwelder, H. S. (2000). Binge pattern ethanol exposure in adolescent and adult rats: Differential impact on subsequent responsiveness to ethanol. Alcoholism: Clinical and Experimental Research, 24, 12511256. doi:10.1111/j.1530-0277.2000.tb02091.xGoogle Scholar
Wills, T. A., Sandy, J. M., Yaeger, A. M., Cleary, S. D., & Shinar, O. (2001). Coping dimensions, life stress, and adolescent substance use: A latent growth analysis. Journal of Abnormal Psychology, 110, 309323. doi:10.1037/0021-843X.110.2.309Google Scholar
Wills, T. A., Vaccaro, D., & McNamara, G. (1994). Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: An application of Cloninger's Theory. Journal of Substance Use, 6, 120. doi:10.1016/S0899-3289(94)90039-6Google Scholar
Windle, M., Spear, L. P., Fuligni, A. J., Angold, A., Brown, J. D., Pine, D., et al. (2008). Transitions into underage drinking and problem drinking: Developmental processes and mechanisms between 10 and 15 years of age. Pediatrics, 121, S273S289. doi:10.1542/peds.2007-2243CCrossRefGoogle Scholar
Withers, N. W., Pulvirenti, L., Koob, G. F., & Gillin, J. C. (1995). Cocaine abuse and dependence. Journal of Clinical Psychopharmacology, 15, 6378. doi:0.1097/00004714-199502000-00010Google Scholar
Zucker, R. A., Ellis, D. A., & Fitzgerald, H. E. (1994). Developmental evidence for at least two alcoholisms: I. Biopsychosocial variation among pathways into symptomatic difficulty. In Babor, T. F., Hesselbrock, V. M., Meyer, R. E., & Shoemaker, W. (Eds.), Types of alcoholics: Evidence from clinical, experimental, and genetic research (pp. 134146). New York: New York Academy of Sciences.Google Scholar