Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-08-04T08:08:15.211Z Has data issue: false hasContentIssue false

Prenatal depression, fetal neurobehavior, and infant temperament: Novel insights on early neurodevelopment from a socioeconomically disadvantaged Indian cohort

Published online by Cambridge University Press:  02 August 2018

M. Fernandes*
Affiliation:
University of Southampton University of Oxford
K. Srinivasan
Affiliation:
St. John's Medical College Hospital St. John's National Academy of Health Sciences
G. Menezes
Affiliation:
Snehalaya Hospital
P. G. Ramchandani
Affiliation:
University of Cambridge
*
Address correspondence and reprint requests to: Michelle Fernandes, Department of Paediatrics, Southampton Children's Hospital, University of Southampton, Southampton SO16 6YD, United Kingdom; E-mail: m.c.fernandes@soton.ac.uk.

Abstract

This article extends the research focusing on the early origins of psychopathology into the prenatal period, by exploring the association between maternal prenatal depression and offspring (fetal and infant) neurobehavior. The sample is recruited from a rural population in South India where women in the third trimester of pregnancy were assessed for depression and the heart rate responses of their fetuses to extrinsically applied vibroacoustic stimuli were studied. At 2 months postbirth, infant temperament and cortisol responsivity to immunization were assessed. The association between maternal prenatal depression and fetal responsivity to vibroacoustic stimulation, and infant responsivity to immunization, was U shaped with higher levels of responsivity noted in the offspring of mothers with very high and very low depression scores, and lower levels noted in the offspring of mothers with moderate depression scores. Maternal prenatal depression was not associated with infant temperament. The findings highlight the importance of environmental influences in the developmental origins of neurobehavior, suggesting that such differences, not evident at baseline, may emerge upon exposure to stressors. The study also emphasizes the need for further investigation in low- and middle-income contexts by providing preliminary evidence of the differing patterns of association observed between high- and low-income populations.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We are grateful to all the participating mothers and infants for their involvement in the project; the staff of Snehalaya Hospital and the Sisters of Charity of Capitanio and Gerosa for hosting the project; and the team members of the Solur Mother and Baby Project in India and the United Kingdom. This work was funded by the Oxford University Department of Psychiatry; the Child Care Health and Development Trust; and the Ashok Ranganathan Bursary; and by the Clarendon Fund, the Pathak Scholarships, the Harold Hyam Wingate Foundation, and the National Institute for Health Research (through awards to M.F.).

References

Allister, L. (2001). The effects of maternal depression on fetal heart rate response to vibroacoustic stimulation. Developmental Neuropsychology, 20, 639651.Google Scholar
Austin, M.-P., Hadzi-Pavlovic, D., Leader, L., Saint, K., & Parker, G. (2005). Maternal trait anxiety, depression and life event stress in pregnancy: Relationships with infant temperament. Early Human Development, 81, 183190.Google Scholar
Baggaley, R. F., Ganaba, R., Filippi, V., Kere, M., Marshall, T., Sombié, I., … Patel, V. (2007). Detecting depression after pregnancy: The validity of the K10 and K6 in Burkina Faso. Tropical Medicine & International Health, 12, 12251229.Google Scholar
Barker, D. J. (2001). Fetal and infant origins of adult disease. Monatsschrift Kinderheilkunde, 149, S2S6.Google Scholar
Barker, D. J., Osmond, C., Golding, J., Kuh, D., & Wadsworth, M. E. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal, 298, 564567.Google Scholar
Barker, E., Kirkham, N., Ng, J., & Jensen, S. (2013). Prenatal maternal depression symptoms and nutrition, and child cognitive function. British Journal of Psychiatry, 203, 417421. doi:10.1192/bjp.bp.113.129486Google Scholar
Bartels, M., Van den Berg, M., Sluyter, F., Boomsma, D. I., & de Geus, J. C. (2003). Heritability of cortisol levels: Review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 28, 121137.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Bennett, H. A., Einarson, A., Taddio, A., Koren, G., & Einarson, T. R. (2004). Prevalence of depression during pregnancy: Systematic review. Obstetrics & Gynecology, 103, 698709.Google Scholar
Bhat, A., Chowdayya, R., Selvam, S., Khan, A., Kolts, R., & Srinivasan, K. (2015). Maternal prenatal psychological distress and temperament in 1–4 month old infants—A study in a non-Western population. Infant Behavior and Development, 39, 3541. doi:10.1016/j.infbeh.2014.12.002Google Scholar
Black, M. M., Walker, S. P., Fernald, L. C. H., Andersen, C. T., DiGirolamo, A. M., Lu, C., … Grantham-McGregor, S. (2016). Early childhood development coming of age: Science through the life course. Lancet, 389, 7790. doi:10.1016/S0140-6736(16)31389-7Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Brennan, P. A., Pargas, R., Walker, E. F., Green, P., Newport, D. J., & Stowe, Z. (2008). Maternal depression and infant cortisol: Influences of timing, comorbidity and treatment. Journal of Child Psychology and Psychiatry, 49, 10991107.Google Scholar
Brouwers, E. P. M., van Baar, A. L., & Pop, V. J. M. (2001). Maternal anxiety during pregnancy and subsequent infant development. Infant Behaviour and Development, 24, 95106.Google Scholar
Calabrese, E. J., & Baldwin, L. A. (2001). The frequency of U-shaped dose responses in the toxicological literature. Toxicological Sciences, 62, 330338. doi:10.1093/toxsci/62.2.330Google Scholar
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders: Longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53, 10331039. doi:10.1001/archpsyc.1996.01830110071009Google Scholar
Chan, M., Lake, A., & Hansen, K. (2017). The early years: Silent emergency or unique opportunity? Lancet, 389, 1113. doi:10.1016/S0140-6736(16)31701-9Google Scholar
Chapillon, P., Patin, V., Roy, V., Vincent, A., & Caston, J. (2002). Effects of pre- and postnatal stimulation on developmental, emotional, and cognitive aspects in rodents: A review. Developmental Psychobiology, 41, 373387.Google Scholar
Chung, T. K., Lau, T. K., Yip, A. S., Chiu, H. F., & Lee, D. T. (2001). Antepartum depressive symptomatology is associated with adverse obstetric and neonatal outcomes. Psychosomatic Medicine, 63, 830834.Google Scholar
Clark, P. M., Hindmarsh, P. C., Shiell, A. W., Law, C. M., Honour, J. W., & Barker, D. J. P. (1996). Size at birth and adrenocortical function in childhood. Clinical Endocrinology, 45, 721726.Google Scholar
Copper, R. L., Goldenberg, R. L., Das, A., Elder, N., Swain, M., Norman, G., … Meier, A. (1996). The preterm prediction study: Maternal stress is associated with spontaneous preterm birth at less than thirty-five weeks' gestation. American Journal of Obstetrics and Gynecology, 175, 12861292. doi:10.1016/s0002-9378(96)70042-xGoogle Scholar
Cox, J. L., Holden, J. M., & Sagovsky, R. (1987). Detection of postnatal depression: Development of the 10-item Edinburgh Postnatal Depression Scale. British Journal of Psychiatry, 150, 782786.Google Scholar
Da-Silva, V. A., Moraes-Santos, A. R., Carvalho, M. S., Martina, M. L. P., & Teixeira, N. A. (1998). Prenatal and postnatal depression among low income Brazilian women. Brazilian Journal of Medical and Biological Research, 31, 799804.Google Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737746.Google Scholar
de Bruijn, A. T., van Bakel, H. J., Wijnen, H., Pop, V. J., & van Baar, A. L. (2009). Prenatal maternal emotional complaints are associated with cortisol responses in toddler and preschool aged girls. Developmental Psychobiology, 51, 553563.Google Scholar
Diego, M. A., Field, T., & Hernandez-Reif, M. (2005). Prepartum, postpartum and chronic depression effects on neonatal behavior. Infant Behavior and Development, 28, 155164Google Scholar
Dieter, J. N. I., Field, T., Hernandez-Reif, M., Jones, N. A., Lecanuet, J. P., Salman, F. A., & Redzepi, M. (2001). Maternal depression and increased fetal activity. Journal of Obstetrics and Gynaecology, 21, 468473.Google Scholar
DiPietro, J. A., Costigan, K. A., & Gurewitsch, E. D. (2003). Fetal response to induced maternal stress. Early Human Development, 74, 125138.Google Scholar
DiPietro, J. A., Hodgson, D. M., Costigan, K. A., Hilton, S. C., & Johnson, T. R. B. (1996a). Development of fetal movement—Fetal heart rate coupling from 20 weeks through term. Early Human Development, 44, 139151.Google Scholar
DiPietro, J. A., Hodgson, D. M., Costigan, K. A., Hilton, S. C., & Johnson, T. R. B. (1996b). Fetal neurobehavioral development. Child Development, 67, 25532567.Google Scholar
DiPietro, J. A., Kivlighan, K. T., Costigan, K. A., Rubin, S. E., Shiffler, D. E., Henderson, J. L., & Pillion, J. P. (2010). Prenatal antecedents of newborn neurological maturation. Child Development, 81, 115130.Google Scholar
DiPietro, J. A., Novak, M. F., Costigan, K. A., Atella, L. D., & Reusing, S. P. (2006). Maternal psychological distress during pregnancy in relation to child development at age 2. Child Development, 77, 573587.Google Scholar
Dwarkanath, P., Vasudevan, A., Thomas, T., Anand, S. S., Desai, D., Gupta, M., … Srinivasan, K. (2018). Socio-economic, environmental and nutritional characteristics of urban and rural South Indian women in early pregnancy: Findings from the South Asian Birth Cohort (START). Public Health Nutrition. Advance online publication.Google Scholar
Dyson, T., & Visaria, P. (2004). Migration and urbanisation: Retrospect and prospects. In Dyson, T., Casses, R., & Visaria, L. (Eds.), Twenty-first century India: Population, economy, human development, and the environment (pp. 115129). Oxford: Oxford Univeristy Press.Google Scholar
Egliston, K.-A., McMahon, C., & Austin, M.-P. (2007). Stress in pregnancy and infant HPA axis function: Conceptual and methodological issues relating to the use of salivary cortisol as an outcome measure. Psychoneuroendocrinology, 32, 113.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi: doi:10.1017/S0954579410000611Google Scholar
Farber, E. A., Vaughn, B., & Egeland, B. (1981). The relationship of prenatal maternal anxiety to infant behavior and mother-infant interaction during the first six months of life. Early Human Development, 5, 267277.Google Scholar
Fernandes, M. (2011). Does prenatal maternal depression predict foetal and infant development? A study of mothers and infants in rural South India (Unpublished doctoral dissertation, University of Oxford).Google Scholar
Fernandes, M., Srinivasan, K., Stein, A., Menezes, G., Sumithra, R., & Ramchandani, P. (2011). Assessing prenatal depression in the rural developing world: A comparison of two screening measures. Archives of Women's Mental Health, 14, 209216. doi:10.1007/s00737-010-0190-2Google Scholar
Fernandes, M., Stein, A., Newton, C. R. J., Ismail, L. C., Kihara, M., Wulff, K., … Villar, J. (2014). The INTERGROWTH-21st Project Neurodevelopment Package: A novel method for the multi-dimensional assessment of neurodevelopment in pre-school age children. PLOS ONE, 9, e113360. doi:10.1371/journal.pone.0113360Google Scholar
Fernandes, M., Stein, A., Srinivasan, K., Menezes, G., & Ramchandani, P. G. (2015). Foetal exposure to maternal depression predicts cortisol responses in infants: Findings from rural South India. Child: Care, Health and Development, 41, 677686. doi:10.1111/cch.12186Google Scholar
Fernandes, M., Stein, A., Srinivasan, K., Menezes, G., Renton, M., Zani, J., & Ramchandani, P. (2014). Maternal depression and foetal responses to novel stimuli: Insights from a socio-economically disadvantaged Indian cohort. Journal of Developmental Origins of Health and Disease, 5, 178182. doi:10.1017/S2040174414000129Google Scholar
Field, T., Diego, M., Dieter, J., Hernandez-Reif, M., Schanberg, S., Kuhn, C., … Bendell, D. (2001). Depressed withdrawn and intrusive mothers’ effects on their fetuses and neonates. Infant Behavior and Development, 24, 2739.Google Scholar
Field, T., Diego, M., Dieter, J., Hernandez-Reif, M., Schanberg, S., Kuhn, C., … Bendell, D. (2004). Prenatal depression effects on the fetus and newborn. Infant Behavior and Development, 27, 216229.Google Scholar
Field, T., Diego, M., & Hernandez-Reif, M. (2008). Prenatal dysthymia versus major depression effects on the neonate. Infant Behavior and Development, 31, 190193. doi:10.1016/j.infbeh.2007.10.004Google Scholar
Fujioka, A., Fujioka, T., Ishidab, Y., Maekawa, T., & Nakamura, S. (2006). Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience, 141, 907915.Google Scholar
Fujioka, T., Fujioka, A., Tan, N., Chowdhury, G. M. I., Mouri, H., Sakata, Y., & Nakamura, S. (2001). Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience, 103, 301307.Google Scholar
Gartstein, M. A., & Rothbart, M. K. (2003). Studying infant temperament via the Revised Infant Behavior Questionnaire. Infant Behavior and Development, 26, 6486.Google Scholar
Glover, V. (2011). Prenatal stress and the origins of psychopathology: An evolutionary perspective. Journal of Child Psychology and Psychiatry, 52, 356367.Google Scholar
Glover, V., Bergman, K., Sarkar, P., & O'Connor, T. G. (2009). Association between maternal and amniotic fluid cortisol is moderated by maternal anxiety. Psychoneuroendocrinology, 34, 430435. doi:10.1016/j.psyneuen.2008.10.005Google Scholar
Glover, V., & O'Connor, T. G. (2002). Effects of antenatal stress and anxiety: Implications for development and psychiatry. British Journal of Psychiatry, 180, 389391.Google Scholar
Goldenberg, R. L. (1991). Social and psychological factors and pregnancy outcome. In Merkatz, C. I. R. (Ed.), Complications of pregnancy: Medical, surgical, gynecologic, psychosocial and perinatal (pp. 8096). Baltimore: Williams & Wilkins.Google Scholar
Goldsmith, H. H., & Rothbart, M. K. (1991). Contemporary instruments for assessing early temperament by questionnaire and in the laboratory. In Strelau, J. & Angleitner, A. (Eds.), Explorations in temperament: International perspectives on theory and measurement (pp. 249272). New York: Plenum Press.Google Scholar
Grantham-McGregor, S., Cheung, Y. B., Cueto, S., Glewwe, P., Richter, L., & Strupp, B. (2007). Developmental potential in the first 5 years for children in developing countries. Lancet, 369, 6070. doi:10.1016/S0140-6736(07)60032-4Google Scholar
Gutteling, B. M., de Weerth, C., Willemsen-Swinkels, S. H. N., Huizink, A. C., Mulder, E. J. H., Visser, G. H. A., & Buitelaar, J. K. (2005). The effects of prenatal stress on temperament and problem behavior of 27-month-old toddlers. European Child and Adolescent Psychiatry, 14, 4151.Google Scholar
Harkness, J., Pennell, B. E., Villar, A., Gebler, N., Aguilar-Gaxiola, S., & Bilgen, I. (2008). Translation procedures and translation assessment in the World Mental Health Survey Initiative. In Kessler, R. C. & Üstün, T. B. (Eds.), The WHO world mental health surveys: Global perspectives on the epidemiology of mental disorders (pp. 91113). Geneva, Switzerland: World Health Organization.Google Scholar
Henry, C., & Kabbaj, M. (1994). Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. Journal of Neuroendocrinology, 6, 341345.Google Scholar
Hill, A. B. (1965). The environment and disease: Association or causation? Paper presented at the Royal Society of Medicine.Google Scholar
Huizink, A. C., Robles De Medina, P. G., Mulder, E. J. H., Visser, G. H. A., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 10781085Google Scholar
Kaplan, L. A., Evans, L., & Monk, C. (2008). Effects of mothers’ prenatal psychiatric status and postnatal caregiving on infant biobehavioral regulation: Can prenatal programming be modified? Early Human Development, 84, 249256.Google Scholar
Kessler, R. C., Barker, P. R., Colpe, L. J., Epstein, J. F., Gfroerer, J. C., Hiripi, E., … Zaslavsky, A. M. (2003). Screening for serious mental illness in the general population. Archives of General Psychiatry, 60, 184189.Google Scholar
Kessler, R. C., Zhao, S., Blazer, D. G., & Swartz, M. (1997). Prevalence, correlates, and course of minor depression and major depression in the national comorbidity survey. Journal of Affective Disorders, 45, 1930. doi:10.1016/s0165-0327(97)00056-6Google Scholar
Leader, L. R., Baillie, P., Martin, B., & Vermeulen, E. (1982a). The assessment and significance of habituation to a repeated stimulus by the human fetus. Early Human Development, 7, 211219.Google Scholar
Leader, L. R., Baillie, P., Martin, B., & Vermeulen, E. (1982b). Fetal habituation in high-risk pregnancies. BJOG, 89, 441446.Google Scholar
Leader, L. R., & Dore, C. (1979). Fetal heart habituation to vibroacoustic stimulation as a predictor of infant development at 3 years of age. Paper presented at the 14th Annual Congress of the Australian Perinatal Society, Adelaide.Google Scholar
Lukose, A., Ramthal, A., Thomas, T., Bosch, R., Kurpad, A. V, Duggan, C., & Srinivasan, K. (2014). Nutritional factors associated with antenatal depressive symptoms in the early stage of pregnancy among urban South Indian women. Maternal and Child Health Journal, 18, 161170.Google Scholar
Lundy, B. L., Jones, N. A., Field, T., Nearing, G., Davalos, M., Pietro, P. A., … Kuhn, C. (1999). Prenatal depression effects on neonates. Infant Behavior and Development, 22, 119129.Google Scholar
McCance, D. R., Pettitt, D. J., Hanson, R. L., Jacobsson, L. T. H., Knowler, W. C., & Bennett, P. H. (1994). Birth weight and non-insulin dependent diabetes: Thrifty genotype, thrifty phenotype, or surviving small baby genotype? British Medical Journal, 308, 942945.Google Scholar
McGrath, J. M., Records, K., & Rice, M. (2008). Maternal depression and infant temperament characteristics. Infant Behavior and Development, 31, 7180.Google Scholar
Meek, L. R., Burda, K. M., & Paster, E. (2000). Effects of prenatal stress on development in mice: Maturation and learning. Physiology & Behavior, 71, 543549.Google Scholar
Miceli, P. J., Whitman, T. L., Borkowski, J. G., Braungart-Rieker, J., & Mitchell, D. W. (1998). Individual differences in infant information processing: The role of temperamental and maternal factors. Infant Behavior and Development, 21, 119136.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H. L., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108, 26932698. doi:10.1073/pnas.1010076108Google Scholar
Mohler, E., Parzer, P., Brunner, R., Wiebel, A., & Resch, F. (2006). Emotional stress in pregnancy predicts human infant reactivity. Early Human Development, 82, 731737.Google Scholar
Monk, C., Fifer, W., Myers, M., Sloan, R., Trien, L., & Hurtado, A. (2000). Maternal stress responses and anxiety during pregnancy: Effects on fetal heart rate. Developmental Psychobiology, 36, 6777.Google Scholar
Monk, C., Myers, M. M., Sloan, R. P., Ellman, L. M., & Fifer, W. P. (2003). Effects of women's stress-elicited physiological activity and chronic anxiety on fetal heart rate. Journal of Developmental and Behavioral Pediatrics, 24, 3238.Google Scholar
Murray, D., & Cox, J. L. (1990). Screening for depression during pregnancy with the Edinburgh Depression Scale (EPDS). Journal of Reproductive and Infant Psychology, 8, 99107. doi:10.1080/02646839008403615Google Scholar
Murray, E., Fernandes, M., Fazel, M., Kennedy, S. H., Villar, J., & Stein, A. (2015). Differential effect of intrauterine growth restriction on childhood neurodevelopment: A systematic review. BJOG, 122, 10621072. doi:10.1111/1471-0528.13435Google Scholar
Murray, L., & Cooper, P. J. (1997). Effects of postnatal depression on infant development. Archives of Diseases in Childhood, 77, 99101.Google Scholar
O'Connor, T. G., Ben-Shlomo, Y., Heron, J., Golding, J., Adams, D., & Glover, V. (2005). Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biological Psychiatry, 58, 211217. doi:10.1016/j.biopsych.2005.03.032Google Scholar
O'Heron, C. A. (1991). Coping and postpartum depression: An analysis of coping and depression during pregnancy and the puerperium (Unpublished doctoral dissertation, University of Missouri, Saint Louis).Google Scholar
Olness, K. (2003). Effects on brain development leading to cognitive impairment: A worldwide epidemic. Journal of Developmental & Behavioral Pediatrics, 24, 120130.Google Scholar
Parsons, C. E., Young, K. S., Cooper, P. J., & Stein, A. (2011). Postnatal depression and its effects on child development: A developing world perspective. In Fitzgerald, H. E., Puura, K., Tomlinson, M., & Campbell, P. (Eds.), International perspectives on children and mental health (Vol. 1, pp. 89110). Santa Barbara, CA: ABC-CLIO.Google Scholar
Patel, V., Rodrigues, M., & DeSouza, N. (2002). Gender, poverty, and postnatal depression: A study of mothers in Goa, India. American Journal of Psychiatry, 159, 4347.Google Scholar
Rahman, A., Iqbal, Z., & Harrington, R. (2003). Life events, social support and depression in childbirth: Perspectives from a rural community in the developing world. Psychological Medicine, 33, 11611167.Google Scholar
Ratna, U. (2007). Interface between urban and rural development in India. In Dutt, A. K. & Thakur, B. (Eds.), City, society, and planning: Planning essays in honour of Prof. A. K. Dutt (pp. 271272). Uttam Nagar, India: Concept Publishing Company.Google Scholar
Registrar General & Census Commissioner, India, New Delhi, Ministry of Home Affairs, Government of India. (2010–11). Census of India 2011. Retrieved from http://censusindia.gov.in/2011-common/censusdataonline.htmlGoogle Scholar
Richter, L. M., Daelmans, B., Lombardi, J., Heymann, J., Boo, F. L., Behrman, J. R., … & Darmstadt, G. L. (2017). Investing in the foundation of sustainable development: Pathways to scale up for early childhood development. Lancet, 389, 103118. doi:10.1016/S0140-6736(16)31698-1Google Scholar
Rieger, M., Pirke, K.-M., Buske-Kirschbaum, A., Wurmser, H., Papousek, M., & Hellhammer, S. D. H. (2004). Influence of stress during pregnancy on HPA activity and neonatal behavior. Annals of the New York Academy of Sciences, 1032, 228230.Google Scholar
Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569578.Google Scholar
Rothbart, M. K. (1986). Longitudinal observation of infant temperament. Developmental Psychology, 22, 356365.Google Scholar
Rutter, M., Kim-Cohen, J., & Maughan, B. (2006). Continuities and discontinuities in psychopathology between childhood and adult life. Journal of Child Psychology and Psychiatry, 47, 276295. doi:10.1111/j.1469-7610.2006.01614.xGoogle Scholar
Sandman, C. A., Glynn, L., Wadhwa, P. D., Chicz-DeMet, A., Porto, M., & Garite, T. (2003). Maternal hypothalamic-pituitary-adrenal disregulation during the third trimester influences human fetal responses. Developmental Neuroscience, 25, 4149.Google Scholar
Sandman, C. A., Wadhwa, P. D., Glynn, L., Chicz-Demet, A., Porto, M., & Garite, T. J. (1999). Corticotrophin-releasing hormone and fetal responses in human pregnancy. Annals of the New York Academy of Sciences, 897, 6675.Google Scholar
Schneider, M. L. (1992a). The effect of mild stress during pregnancy on birth-weight and neuromotor maturation in rhesus-monkey infants (Macaca mulatta). Infant Behavior and Development, 15, 389403.Google Scholar
Schneider, M. L. (1992b). Prenatal stress exposure alters postnatal behavioral expression under conditions of novelty challenge in rhesus-monkey infants. Developmental Psychobiology, 25, 529540.Google Scholar
Schneider, M. L., & Coe, C. L. (1993). Repeated social stress during pregnancy impairs neuromotor development of the primate infant. Journal of Developmental and Behavioral Pediatrics, 14, 8187.Google Scholar
Schneider, M. L., Roughton, E. C., Koehler, A. J., & Lubach, G. R. (1999). Growth and development following prenatal stress exposure in primates: An examination of ontogenetic vulnerability. Child Development, 70, 263274.Google Scholar
Takahashi, L. K., Haglin, C., & Kalin, N. H. (1992). Prenatal stress potentiates stress-induced behavior and reduces the propensity to play in juvenile rats. Physiology and Behavior, 51, 319323.Google Scholar
Takahashi, L. K., & Kalin, N. H. (1991). Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Research, 558, 7578.Google Scholar
Takahashi, L. K., Kalin, N. H., Parksdale, C. M., van den Burgt, J. A., & Brownfield, M. S. (1988). Stressor controllability during pregnancy influences pituitary-adrenal hormone concentrations and analgesic responsiveness in offspring. Physiology and Behavior, 42, 323329.Google Scholar
Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry and Allied Disciplines, 48, 245261.Google Scholar
Thompson, R. A, & Nelson, C. A. (2001). Developmental science and the media: Early brain development. American Psychologist, 56, 5.Google Scholar
Tucker, S. M., Miller, L. A., & Miller, D. (2009a). Antepartum fetal assessment. In Mosby's pocket guide to fetal monitoring: A multidisciplinary approach (6th ed., pp. 191209). Saint Louis, MO: Elsevier.Google Scholar
Tucker, S. M., Miller, L. A., & Miller, D. (2009b). Pattern recognition and interpretation. In Mosby's pocket guide to fetal monitoring: A multidisciplinary approach (6th ed., pp. 95138). St. Louis, MO: Elsevier.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division. (2009). World Fertility Data 2008 (Tech. Rep. No. POP/DB/Fert/Rev2008). New York: Author.Google Scholar
US Bureau of the Census. (2017). United States Census Bureau. Retrieved October 18, 2017, from https://http://www.census.gov/quickfacts/fact/table/baltimorecitymaryland,baltimorecitymarylandcounty/INC110215?Google Scholar
Van den Bergh, B. R. H. (1990). The influence of maternal emotions during pregnancy on fetal and neonatal behavior. Journal of Prenatal & Perinatal Psychology & Health, 5, 119130.Google Scholar
Van den Bergh, B. R. H., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Development, 75, 10851097.Google Scholar
Werner, E. A., Myers, M. M., Fifer, W. P., Cheng, B., Fang, Y., Allen, R., & Monk, C. (2007). Prenatal predictors of infant temperament. Developmental Psychobiology, 49, 474484.Google Scholar
Wilke, P. K., Gmelch, W. H., & Lovrich, N. P. Jr. (1985). Stress and productivity: Evidence of the inverted U function. Public Productivity Review, 9, 342356.Google Scholar
Worobey, J., & Blajda, V. M. (1989). Temperament ratings at 2 weeks, 2 months, and 1 year: Differential stablity of activity and emotionality. Developmental Psychology, 25, 257263.Google Scholar
Wu, G., Bazer, F. W., Cudd, T. A., Meininger, C. J., & Spencer, T. E. (2004). Maternal nutrition and fetal development. Journal of Nutrition, 134, 21692172.Google Scholar
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459482.Google Scholar
Young, E. A., Aggen, S. H., Prescott, C. A., & Kendler, K. S. (2000). Similarity in saliva cortisol measures in monozygotic twins and the influence of past major depression. Biological Psychiatry, 48, 7074. doi:10.1016/s0006-3223(00)00842-8Google Scholar