Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-19T12:35:03.229Z Has data issue: false hasContentIssue false

Health Consequences Management in a Multi-Hazard Context: A Systematic Review of the Coincidence of Flood and the COVID-19 Pandemic

Published online by Cambridge University Press:  02 May 2024

Arezoo Yari
Affiliation:
Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran Department of Health in Emergencies and Disasters, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
Md. Khalid Hasan
Affiliation:
Institute of Disaster Management and Vulnerability Studies, University of Dhaka, Dhaka 1000, Bangladesh
Homa Yousefi Khoshsabegheh
Affiliation:
Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran Disaster Risk Management Office, Ministry of Health and Medical Education, Tehran, Iran
Mohsen Soufi Boubakran
Affiliation:
Department of Mechanical Engineering, Urmia University, Urmia, Iran
Mohamad Esmaeil Motlagh*
Affiliation:
Department of Pediatrics, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
*
Corresponding author: Mohamad Esmaeil Motlagh; Email: Dr.motlagh.ms@gmail.com.

Abstract

Objectives:

The co-occurring flood and coronavirus disease (COVID-19) increase the consequences for health and life. This study examined the strategies to manage the health consequences of the co-occurring flood and COVID-19, with a specific focus on these 2 challenges.

Methods:

This review included all the studies published in peer-reviewed journals between January 1980 and June 2021. Several electronic databases were searched, including Scopus, Web of Science, and PubMed. Mixed Methods Appraisal Tools (MMT), version 2018, assessed the articles retrieved through a comprehensive and systematic literature search. Descriptive and thematic analyses were carried out to derive strategies for managing the health consequences of the simultaneous flood and COVID-19.

Results:

Among 4271 identified articles, 10 were eligible for inclusion. In total, 199 strategies were identified in this review for managing the multi-hazard health consequences of flooding and COVID-19, which were classified into 9 categories and 25 subcategories. The categories included policy making and decision making, coordination, risk communication, logistics, planning, preparedness measures, response measures, social and humanitarian support, and actions of local communities and non-governmental organizations.

Conclusions:

Managing a multi-hazard and reducing its health consequences requires various actions. Flood management must be needed, and flood-affected people and their health should be protected.

Type
Systematic Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hiroki, K. High-level Experts and Leaders Panel on water and disasters (HELP). Principles to address water-related DRR in COVID-19 pandemic. United Nations, Department of Economic and Social Affairs; 2020.Google Scholar
Quigley, MC, Attanayake, J, King, A, Prideaux, F. A multi-hazards earth science perspective on the COVID-19 pandemic: the potential for concurrent and cascading crises. Environ Syst Decis. 2020;40(2):199-215.CrossRefGoogle ScholarPubMed
Hariri-Ardebili, MA, Lall, U. Superposed natural hazards and pandemics: breaking dams, floods, and COVID-19. Sustainability. 2021;13(16):8713.CrossRefGoogle Scholar
Ishiwatari, M, Koike, T, Hiroki, K, et al. Managing disasters amid COVID-19 pandemic: approaches of response to flood disasters. Prog Disaster Sci. 2020;6:100096.CrossRefGoogle ScholarPubMed
Ashraf, A. Lessons learned from COVID-19 response for disaster risk management. Nat Hazards (Dordr). 2021;107(2):2027-2032.CrossRefGoogle ScholarPubMed
Begum, A, Dutta, S, Naznin, Z, Okura, Y. Monsoon, floods and COVID-19: building community resilience in Bangladesh. Findings from Union Disaster Management Committees – June 2020.Google Scholar
Chadha, J, Khullar, L, Mittal, N. Facing the wrath of enigmatic mutations: a review on the emergence of severe acute respiratory syndrome coronavirus 2 variants amid coronavirus disease-19 pandemic. Environ Microbiol. 2022;24(6):2615-2629.CrossRefGoogle ScholarPubMed
Al-Quteimat, OM, Amer, AM. The impact of the COVID-19 pandemic on cancer patients. Am J Clin Oncol . 2020;43(6):452-455.CrossRefGoogle ScholarPubMed
Salvati, P, Petrucci, O, Rossi, M, et al. Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Sci Total Environ. 2018;610:867-879.CrossRefGoogle ScholarPubMed
Yari, A, Ostadtaghizadeh, A, Ardalan, A, et al. Risk factors of death from flood: findings of a systematic review. J Environ Health Sci Eng. 2020;18(2):1643-1653.CrossRefGoogle ScholarPubMed
Yari, A, Ardalan, A, Ostadtaghizadeh, A, et al. Underlying factors affecting death due to flood in Iran: a qualitative content analysis. Int J Disaster Risk Reduct. 2019;40:101258.CrossRefGoogle Scholar
Ibrahim, NF, Zardari, NH, Shirazi, SM, et al. Identification of vulnerable areas to floods in Kelantan River sub-basins by using flood vulnerability index. GEOMATE J. 2017;12(29):107-114.Google Scholar
Ivers, LC, Ryan, ET. Infectious diseases of severe weather-related and flood-related natural disasters. Curr Opin Infect Dis. 2006;19(5):408-414.CrossRefGoogle ScholarPubMed
Ryan, B, Franklin, RC, Burkle, FM Jr, et al. Identifying and describing the impact of cyclone, storm and flood related disasters on treatment management, care and exacerbations of non-communicable diseases and the implications for public health. PLoS Curr. 2015;7:ecurrents.dis.62e9286d152de04799644dcca47d9288. doi: 10.1371/currents.dis.62e9286d152de04799644dcca47d9288 Google ScholarPubMed
Llewellyn, M. Floods and tsunamis. Surg Clin. 2006;86(3):557-578.Google ScholarPubMed
Alderman, K, Turner, LR, Tong, S. Floods and human health: a systematic review. Environ Int. 2012;47:37-47.CrossRefGoogle ScholarPubMed
Turay, B. Flood hazard management in a multiple hazard context: a systematic review of flood hazard management during the COVID-19 pandemic in Africa. Discover Water. 2022;2(1):6.CrossRefGoogle Scholar
Pourghasemi, HR, Gayen, A, Panahi, M, et al. Multi-hazard probability assessment and mapping in Iran. Sci Total Environ. 2019;692:556-571.CrossRefGoogle ScholarPubMed
Page, MJ, McKenzie, JE, Bossuyt, PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.CrossRefGoogle ScholarPubMed
Hong, QN, Pluye, P, Fàbregues, S, et al. Mixed Methods Appraisal Tool (MMAT), version 2018. Registration of copyright. 2018;1148552(10).Google Scholar
Hong, QN, Fàbregues, S, Bartlett, G, et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Educ Inf. 2018;34(4):285-291.Google Scholar
Simonovic, SP, Kundzewicz, ZW, Wright, N. Floods and the COVID-19 pandemic—a new double hazard problem. Wiley Interdiscip Rev Water. 2021;8(2):e1509.CrossRefGoogle ScholarPubMed
Laksmi, GS, Rudiarto, I, Luqman, Y. Community preparedness toward flood during COVID-19 pandemic at Pekalongan City and Regency. Paper presented at: E3S Web of Conferences; 2020.Google Scholar
Fatemi, F, Moslehi, S. Responding simultaneously to flood and COVID-19 in Iran. Disaster Med Public Health Prep. 2022;16(5):1747-1748.CrossRefGoogle ScholarPubMed
Frausto-Martínez, O, Aguilar-Becerra, CD, Colín-Olivares, O, et al. COVID-19, storms, and floods: impacts of Tropical Storm Cristobal in the western sector of the Yucatan Peninsula, Mexico. Sustainability. 2020;12(23):9925.CrossRefGoogle Scholar
Louw, E, Olanrewaju, CC, Olanrewaju, OA, Chitakira, M. Impacts of flood disasters in Nigeria: a critical evaluation of health implications and management. Jàmbá J Disaster Risk Stud. 2019;11(1):1-9.Google Scholar
Aji, A, Hayati, R, Benardi, AI, et al. Assessment of vulnerability and community preparedness against flood disaster during COVID-19 pandemic period in Semarang City. Paper presented at: 6th International Conference on Education & Social Sciences (ICESS 2021); 2021.CrossRefGoogle Scholar
Shortus, M, Musto, J, Bugoro, H, et al. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014. Western Pac Surveill Response J. 2016;7(1):38.Google Scholar
Kaye, AD, Okeagu, CN, Pham, AD, et al. Economic impact of COVID-19 pandemic on healthcare facilities and systems: international perspectives. Best Pract Res Clin Anaesthesiol. 2021;35(3):293-306.CrossRefGoogle ScholarPubMed
Bello, O, Bustamante, A, Pizarro, P. Planning for disaster risk reduction within the framework of the 2030 Agenda for Sustainable Development. Economic Commission for Latin America and the Caribbean (ECLAC), 2021.Google Scholar
Rehman, J, Sohaib, O, Asif, M, Pradhan, B. Applying systems thinking to flood disaster management for a sustainable development. Int J Disaster Risk Reduct. 2019;36:101101.CrossRefGoogle Scholar
Balsari, S, Kiang, M, Buckee, C. Data in crisis—rethinking disaster preparedness in the United States. N Engl J Med . 2021;385(16):1526.CrossRefGoogle ScholarPubMed
Ma, Z, Guo, S, Deng, X, Xu, D. Community resilience and resident’s disaster preparedness: evidence from China’s earthquake-stricken areas. Nat Hazards (Dordr). 2021;108(1):567-591.CrossRefGoogle Scholar
Ajay, A. Role of technology in responding to disasters: insights from the great deluge in Kerala. Curr Sci. 2019;116(6):00113891.CrossRefGoogle Scholar
Ciottone, GR, Biddinger, PD, Darling, RG, et al. Ciottone’s disaster medicine. Elsevier Health Sciences; 2015.Google Scholar
Becker, M, Blatt, F, Szczerbicka, H. A multi-agent flooding algorithm for search and rescue operations in unknown terrain. Paper presented at: German Conference on Multiagent System Technologies; 2013.CrossRefGoogle Scholar
Supplementary material: File

Yari et al. supplementary material

Yari et al. supplementary material
Download Yari et al. supplementary material(File)
File 28.9 KB