Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T05:41:42.494Z Has data issue: false hasContentIssue false

A new highly variable non-marine bivalve fauna and a new species from basal Westphalian D near Osnabriick, Germany with an Appendix: New internal and external features in the genus Anthraconaia

Published online by Cambridge University Press:  03 November 2011

R. M. C. Eagar
Affiliation:
The Manchester Museum, University, Manchester M13 9PL, U.K.; address for correspondence: 23 High Bond End, Knaresborough, North Yorkshire HG5 9BT, U.K.
H. W. J. van Amerom
Affiliation:
Geologisches Landesamt Nordrhein-Westfalen, De Greiff-Strasse 195, D-47803 Krefeld (Postfach 1080, D-47710 Krefeld), Germany; present address: Jos Habetsstraat 30, NL-6419 CD Heerlen, The Netherlands

Abstract

The study is based on over 170 bivalve specimens collected in the last seven years by three independent collectors in basal Westphalian D strata at Piesberg Quarry, near Osnabrück, northern Germany. All the material has come from the roof shales of either the Bänkchen or the Dreibänke coal, 25 m above it, most of it from above the Dreibanke coal. Both faunal bands have closely similar sediments, shells and floral associations, mainly of hydrophyllic plants, including those that characterise waterlogged swamps. The palaeoenvironments were, on average, of low energy deltaic lakes.

Both faunal bands constitute life assemblages of small, sparse Anthraconaia mingled with abundant plants and plant debris in richly carbonaceous shale with a variable carbonate content. Siphonal and pedal gapes of the valves indicate that the bivalves lived in a steeply burrowing position probably below the surface of the sediments. After death most valve pairs lay with their median planes parallel to the bedding planes of the sediment. Later overlying pressure, normal to bedding planes and varying according to the time of carbonate formation, led to a pattern of breakdown of the convexity of the shells essentially the same as that found in larger Anthraconaia in Westphalian B. In both cases it appears that lateral profiles of shells have been unaffected by vertical crushing. It is therefore reasonable to treat the profiles of uncrushed and vertically crushed shells together.

On the basis of measurements and morphology two groups of shells have been distinguished at Piesberg, that of Anthraconaia pruvosti (Tchernychev) Weir, comprising about 96 per cent of the fauna, and the remainder Anthraconaia piesbergensis sp. nov. Each is illustrated by a variation diagram or pictograph and is in part defined by growth equations in terms of shell length, height and anterior end. The small A. piesbergensis, which also yields evidence of posterior gape, is formally described. Anthraconaia pruvosti, which has not been previously recorded in Germany, shows extremely wide variation with a number of new varieties, but all intergrade with previously known varieties of this species and include Anthraconaia weissiana (Geinitz). The mean size of the shells is half that of the holotype, from northern France, but size ranges are comparable with those from the U.K. The mode of the fauna lies around small, elongate, subtriangular shells with nearly straight to slightly reflected ventral margins.

The elements of the Piesberg fauna fall into place stratigraphically in the sequence of Anthraconaia faunas in Westphalian C to late Westphalian D, mainly in the southern part of the U.K. Moreover, very small, scarce shells recently described above No. 10 coal, late Westphalian D at Writhlington, Somerset, U.K., appear related to A. piesbergensis. At this horizon they had different associates and a different palaeohabitat from those of the larger Anthraconaia pringlei (Dix & Trueman) which succeeded A. pruvosti. It is therefore likely that A. piesbergensis may have occupied a different palaeoecological niche from that of A. pruvosti and that A. piesbergensis was collected from a horizon slightly different from those yielding A. pruvosti at Piesberg Quarry, possibly from a fauna which lived in shallower water.

Re-figuring of uncrushed, excellently preserved material of Anthraconaia aff. pruvosti from late Westphalian C of Pembrokeshire, SW Wales, reveals new evidence of the musculature of the genus Anthraconaia. There is also clear evidence of siphonal and pedal gapes in closed valves, both being features previously unrecognised in Anthraconaia, and characteristic, to date, only of Westphalian late C and D Stages in Germany and the U.K.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altnöder, K. von 1926. Beobachtungen iiber die Biologie von Margaritana margaritifera und iiber die Okologie ihres Wohnorts. Arkiv for hydrobiologie 17, 423–91.Google Scholar
Amerom, H. W. J.van Bech, H., Sommer, G. & Sowiak, M. 1999. Eine interessante fossile Flora im tiefen Westfal D des Piesberges. Osnabriicker Naturwissenschaftliche Mitteilungen 25 (in press).Google Scholar
Bässler, R., Hoyer, P. & Josten, K.-H. 1971. Das Karbon von Ibbenburen, am Hiiggel und Piesberg. a) Stratigraphie. Fortschritte der Geologie von Rheinland und Westfalen 19, 75–8.Google Scholar
Boucot, A. J. 1953. Life and death assemblages amongst fossils. American Journal of Science 251, 2540.CrossRefGoogle Scholar
Breyer, F. 1971. Geophysikalische und geologische Beitrage zur oberflachennahen Tektonik im Dach des Bramscher Massivs. Fortschritte der Geologie von Rheinland und Westfalen 18, 353–86.Google Scholar
Calver, M. A. 1956. Die stratigraphische Verbreitung der nichtmarinen Muscheln in den Penninischen Kohlenfeldern Englands. Zeitschrift der Deutschen Geologischen Gesellschaft 107, 2639.CrossRefGoogle Scholar
Calver, M. A. 1969. Westphalian of Britain. Comptes Rendus Sixieme Congres International de Stratigraphie et de la Geologie du Carbonifere (Sheffield, 1967) 1, 353–86.Google Scholar
Clayton, G., Coquel, R., Doubinger, J., Gueinn, K. J., Loboziak, S., Owens, B. & Streel, M. 1977. Carboniferous miospores of Western Europe: illustration and zonation. Mededelingen Rijks Geologische Dienst 29, 119.Google Scholar
Cleal, C. J. 1991. The age of the Forest of Dean Coal Measures: fact and fancy. Proceedings of the Geologists' Association 102, 261–4.CrossRefGoogle Scholar
Cox, L. R. (with additions by C. P. Nuttall & E. R. Trueman) 1969. General features of Bivalvia. In Moore, R. C. (ed.) Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia, N2-N129. Lawrence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar
David, Fr. 1990. Sedimentologie und Beckenanalyse im Westfal C und D des nordwestdeutschen Oberkarbons. DGMK Deutsche wissenschaftliche Gesellschaft fur Erdol, Erdgas, und Kohle, Forschungsbericht 384 (3), 1270.Google Scholar
Davies, J. H. & Trueman, A. E. 1927. A revision of the non-marine lamellibranchs of the Coal Measures. Quarterly Journal of the Geological Society, London 83, 210–59.CrossRefGoogle Scholar
Dix, E. & Trueman, A. E. 1929. The Zone of Anthracomya tennis in the Somerset Coalfield. Geological Magazine 65, 499503.CrossRefGoogle Scholar
Eagar, R. M. C. 1947. A study of a non-marine lamellibranch succession in the Anthraconaia lenisulcata Zone of the Yorkshire Coal Measures. Philosophical Transactions of the Royal Society, London Ser. B 233, 154.Google Scholar
Eagar, R. M. C. 1948. Variation in shape of shell with respect to ecological station. A review dealing with Recent Unionidae and certain species of the Anthracosiidae in Upper Carboniferous times. Proceedings of the Royal Society of Edinburgh Sect. B 63, 130–48.Google Scholar
Eagar, R. M. C. 1964. The succession and correlation of the Coal Measures of south-eastern Ireland. Comptes Rendus Cinquieme Congres International de Stratigraphie et de la Geologie du Carbonifere (Paris, 1963) 1, 358–74.Google Scholar
Eagar, R. M. C. 1972. Use of the pictograph. Short Communication. Palaeontology 15, 378–80.Google Scholar
Eagar, R. M. C. 1973. Variation in shape of shell in relation to palaeoecological station in some non-marine Bivalvia of the Coal Measures of south-east Kentucky and of Britain. Comptes Rendus Septieme Congres International de Stratigraphie et de la Geologie du Carbonifere (Krefeld, 1971) 2, 387416.Google Scholar
Eagar, R. M. C. 1975. Some non-marine bivalve faunas from the Dunkard Group and underlying measures. In Barlow, J. (ed.) The Age of the Dunkard, First I. C. White Memorial Symposium Volume, 23-67. Morgantown, West Virginia: Geological and Economic Survey, West Virginia.Google Scholar
Eagar, R. M. C. 1977. Some new Namurian bivalve faunas and their significance in the origin of Carbonicola and in the colonisation of Carboniferous deltaic environments. Philosophical Transactions of the Royal Society of London Ser. B 280, 535–70.Google Scholar
Eagar, R. M. C. 1978. Shape and function of the shell; a comparison of some living and fossil bivalve molluscs. Biological Reviews 53, 169210.CrossRefGoogle Scholar
Eagar, R. M. C. 1987. The shape of the Upper Carboniferous nonmarine bivalve Anthraconaia in relation to the organic carbon content of the host sediment. Transactions of the Royal Society of Edinburgh: Earth Sciences 78, 177–95.CrossRefGoogle Scholar
Eagar, R. M. C. 1994. Non-marine bivalves from Writhlington Geological Nature Reserve, Avon. Proceedings of the Geologists' Association 105, 251–64.CrossRefGoogle Scholar
Eagar, R. M. C, Bech, H., Sommer, G., Sowiak, M. & Van Amerom, H. W. J. 1998. Neue Funde von nicht-marinen Muscheln im Steinbruch der Piesberger Steinindustrie GmbH & Co KG am Piesberg (Westfal D) bei Osnabriick, Osnabriicker Naturwissenschaftliche Mitteilungen 24, 31–8.Google Scholar
Eagar, R. M. C, Stone, N. M. & Dickson, P. A. 1984. Correlations between shape, weight, and thickness of shell in four populations of Venerupis rhomboides (Pennant). Journal of Molluscan Studies 50, 1932.Google Scholar
Geinitz, H. B. 1867. Uber eine neue Anthracosia in der Saarbrucker Steinkohlenformation. Neues Jahrbuch fur Mineralogie, Geologie und Palaeontologie, Stuttgart, Jahrgang 1867, 681–4.Google Scholar
Gothan, W. 1925. Ruhrkarbon und Osnabrucker Karbon. Glueckauf 61, 777–9.Google Scholar
Grebe, H. 1972. Die Verbreitung der Mikrosporen im Ruhrkarbon von den Bochumer Schichten bis zu den Dorstener Schichten (Westfal A-C). Palaontographica B 140 (1-3), 27115.Google Scholar
Guthorl, P. 1937. Anthracomya weissiana (GEINITZ) (Moll., Lamellibr.) aus dem Saarkarbon. Jahrbuch der Preussischen Landesansta.lt Berlin 57, 85–9.Google Scholar
Hedemann, H.-A. & Teichmuller, R. 1971. The paleogeographical development of the Upper Carboniferous. In Die Karbon-Ablagerungen in der Bundesrepublik Deutschland. Fortschritte der Geologie von Rheinland und Westfalen 19, 132–45.Google Scholar
Hind, W. 1893. The affinities of Anthracopter and Anthracomya. Quarterly Journal of the Geological Society 49, 249.CrossRefGoogle Scholar
Hind, W. 1894-1896. A monograph of Carbonicola, Anthracomya and Naiadites. Palaeontographical Society (18984), 1–80; (1895), 81170; (1986) 171-82.Google Scholar
Hind, W. 1906. Fossil molluscan zones in the Carboniferous rocks of the midlands. Naturalist, 253–6.Google Scholar
Jarzembowski, E. A. 1989. Writhlington Geological Nature Reserve. Proceedings of the Geologists' Association 100, 219–34.CrossRefGoogle Scholar
Jenkins, T. B. H. 1960. Non-marine lamellibranch assemblages from the Coal Measures (Upper Carboniferous) of Pembrokeshire, west Wales. Palaeontology 3, 104–23.Google Scholar
Johannessen, O. H. 1973. Population structure and individual growth of Venerupis pullastra (Montagu) (Lamellibranchia). Sarsia 52, 97116.CrossRefGoogle Scholar
Josten, K.-H. 1966. Zur Flora des jiingeren Karbons (Westfal C bis Stefan) im Nordwestdeutschland und ihr Vergleich mit anderen Gebieten. Fortschritte in der Geologie von Rheinland und Westfalen 13(1), 565644.Google Scholar
Josten, K.-H. 1983. Die fossile Flora im Namur das Ruhrkarbons. Fortschritte in der Geologie von Rheinland und Westfalen 31, 1327.Google Scholar
Josten, K.-H. 1991. Die Steinkohlen-Floren Nordwestdeutschlands. Fortschritte in der Geologie von Rheinland und Westfalen 36, Textvol. 434 pp., Atlas 220 Pts.Google Scholar
Josten, K.-H., Kowing, K. & Rabitz, A. 1984. Oberkarbon. In Klassen, H. (ed.) Geologie des Osnabrucker Berglandes, 770. Osnabruck: Osnabrucker Naturwissenschaftliches Museum.Google Scholar
Josten, K.-H. & Laveine, J. p. 1984. Palaobotanisch stratigraphische Untersuchenden im Westfal C-D von Nordfrankreich und Nordwestdeutschland. Fortschritte in der Geologie von Rheinland und Westfalen 32, 89117.Google Scholar
Kowing, K. & Van Amerom, H. W. J. 1994. The Upper Carboniferous of the Piesberg near Osnabruck (Westphalian C and D), Germany. Excursion 1: Devonian-Carboniferous. 4th European Palaeobotanical and Palynological Conference, Heerlen-Kerkrade, 1923 September, 37-45.Google Scholar
Maithy, P. K. 1972. Fossil flora of Westphalian D from Piesberg, near Osnabruck. Palaontographica B 139 (5-6), 83104.Google Scholar
Paproth, E. 1955. Uber die stratigraphische Verbreitung der nichtmarinen Muscheln im Ruhr-Karbon. Geologisches Jahrbuch 71, 2150.Google Scholar
Paproth, E. 1956. Gliederungsmoglichkeiten im oberen Karbon und unteren Rotliegenden mit Hilfe limnischer Muscheln. Zeitschrift der Deutschen Geologischen Gesellschaft 117, 178–82.CrossRefGoogle Scholar
Paproth, E. 1962. Die stratigraphische Verbreitung der nicht-marinen Muscheln im Westfal Nordwestdeutschlands. Fortschritte in der Geologie von Rheinland und Westfalen 3 (2), 787–94.Google Scholar
Paproth, E. 1991. Carboniferous palaeogeographic development in Central Europe. Comptes Rendus Onzieme Congres International de Stratigraphie et de la Geologie du Carbonifere (Beijing, 1957) 1, 171–86.Google Scholar
Pastiels, A. 1960. Les lamellibranches non marins de la Zone a Lenisulcata de la Belgique (Namurien et Westphalian A). Publication No. 2, Centre National de Geologie Houillere, 1206.Google Scholar
Pastiels, A. 1964. Les lamellibranches non marins de la Zone a Communis (Westphalian A) de la Belgique (deuxieme partie). Publication No. 9, Centre National de Geologie Houillere, 1151.Google Scholar
Pruvost, P.1919. La faune continentale du Terrain Houiller. Introduction a l'etude du Terrain Houiller du Nord et du Pasde-Calais, Mem. l'Explic. Carte de la France: Paris: Ministere des Travaux Publics.Google Scholar
Rabitz, A. 1958. Flozgleichstellung in den Essener schichten nordlich Bochum und Dortmund. Geologisches Jahrbuch 73, 389456.Google Scholar
Rabitz, A. 1966. Die marinen Horizonte des flozfuhrenden Ruhrkarbons. Fortschritte in der Geologie von Rheinland und Westfalen 13, 243–96.Google Scholar
Rose, K.-H.Mitarb, unter. von Gödecke, C. P. 1984. Mineral-Neubildungen des Osnabrucker Berglandes im Vergleich mit dem iibrigen Nordwestdeutschland. In Klassen, H. (ed.) Geologie des Osnabrucker Berglandes, 567642. Osnabruck: Osnabrucker Naturwissenschaftliches Museum.Google Scholar
Salter, J. W. 1861. On the fossils of the South Welsh Coalfield. Part 1. Ironstones of the ‘North Crop’. In Iron Ores of Great Britain. Part 3, Iron Ores of South Wales, Memoirs of the Geological Survey of Great Britain, 219–36.Google Scholar
Schultka, S. 1988. Beitrage zur Palaontologie der terrestren Raume, unter besonderer Berucksichtigung des Ibbenbiiren–Osnabrucker Karbons (Inaugural Dissertation, Fachbereich Geowissenschaften Westfalischen Wilhelms-Universitat, Miinster).Google Scholar
Sorusch, M. R. 1981. Untersuchungen zur Feinstratigraphie und Fazies im Karbon des Piesberges, Untersuchungen im Bereich von Floz Dreibanke (Diplomarbeit, Fachbereich Geowissenschaften Westfalischen Wilhelms-Universitat, Minister).Google Scholar
Stadler, G. 1971. Die Kaolin-Kohlensteine aus dem Westfal C und B der Untertagebohring 150 der Steinkohlenbergwerke Ibbenburen und ihre Bedeutung fur die Karbonstratigraphie Nordwestdeutschlands. Fortschritte in der Geolagie von Rheinland und Westfalen 18, 125–46.Google Scholar
Trueman, A. E. 1933. A suggested correlation of the Coal Measures of England and Wales. Proceedings of the Souths Wales Institute of Mining Engineers 49, 6394.Google Scholar
Trueman, A. E. 1936. The Coal Measures of Scotland. Geological Magazine 73, 287–93.CrossRefGoogle Scholar
Trueman, A. E. 1946. Stratigraphical problems in the Coal Measures of Europe and North America. Quarterly Journal of the Geological Society, London 102, lix–xcii.Google Scholar
Trueman, A. E. & Weir, J. 1946-1968. A monograph of British Carboniferous non-marine Lamellibranchia. Part I (1946), Part II (1947, Part III (1947), Part IV (1948), Part V (1951), Part VI (1952), Part VII (1954), Part VIII (1955, Part IX (1956); by Weir only, Part X (1960), Part XI (1966), Part II (1967), Part XIII (1968), i-lx. Palaeontographical Society, 1-449. See also under Weir, below.Google Scholar
Van der Heide, S. 1943. Les lamellibranches limniques du terrain houiller du Limbourg du Sud (Pay-Bas). Mededelingen van de Geologische Stichtung, Serie C-IV-3 (1), 194.Google Scholar
Waterlot, G. 1934. L'Étude de la faune continentale du terrain houiller Sarro-lorraine. In Études des Gîtes mineraux de la France—Bassin houiller de la Sarre et de Lorraine. II. Faunes fossiles, 1317.Google Scholar
Weir, J. 1960, 1966, 1967, 1968. In Trueman & Weir 1946-1968.Google Scholar