Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T16:20:11.373Z Has data issue: false hasContentIssue false

Silicification of feathers in a modern hot spring in New Zealand

Published online by Cambridge University Press:  22 April 2022

Tao ZHAO*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
Liang HU
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China. University of Chinese Academy of Sciences, Beijing 100049, China.
Yanhong PAN
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
*
*Corresponding author. Email: zhaotao@nju.edu.cn

Abstract

Fossil feathers have greatly improved our understanding of the evolutionary transition from non-avian dinosaurs to birds and the evolution of feathers, and may be the only evidence for their source animals in the fossil record. Hot spring environments have been demonstrated to be conducive to the preservation of fossils, but internal silicification of feathers was not observed in the only avian carcass so far discovered in ancient hot spring deposits. To determine whether feathers can be internally silicified, here we analyse feathers sampled from a modern hot spring vent pool – Champagne Pool – in New Zealand. Our results of scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry elemental mapping show that the sampled feathers are silicified to different degrees, and one of them is pervasively silicified. SEM observations show that feathers can be silicified at the cellular level. Degradation is involved in the silicification of feathers, as indicated by the reduction of the abundance of carbon and the loss of keratin fibrils. Our findings suggest that ancient deposits of hot spring vent pools are promising targets in search for fossil feathers.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Alibardi, L. 2013. Immunolocalization of alpha-keratins and feather beta-proteins in feather cells and comparison with the general process of cornification in the skin of mammals. Annals of Anatomy 195, 189–98.10.1016/j.aanat.2012.08.005CrossRefGoogle ScholarPubMed
Alibardi, L. 2017. Review: cornification, morphogenesis and evolution of feathers. Protoplasma 254, 1259–81.10.1007/s00709-016-1019-2CrossRefGoogle ScholarPubMed
Alleon, J., Bernard, S., Le Guillou, C., Daval, D., Skouri-Panet, F., Pont, S., Delbes, L. & Robert, F. 2016. Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chemical Geology 437, 98108.10.1016/j.chemgeo.2016.05.034CrossRefGoogle Scholar
Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. 2019. The early origin of feathers. Trends in Ecology & Evolution 34, 856–69.10.1016/j.tree.2019.04.018CrossRefGoogle ScholarPubMed
Cady, S. L. & Farmer, J. D. 1996. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In Bock, R. B. & Goode, J. A. (eds) Evolution of hydrothermal ecosystems on earth (and Mars?), 150–73. Chichester: John Wiley & Sons.Google Scholar
Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C. & Westall, F. 2015. Geyserite in hot-spring siliceous sinter: window on earth's hottest terrestrial (paleo)environment and its extreme life. Earth-Science Reviews 148, 4464.10.1016/j.earscirev.2015.05.009CrossRefGoogle Scholar
Campbell, K. A., Guido, D. M., John, D. A., Vikre, P. G., Rhys, D. & Hamilton, A. 2019. The Miocene Atastra Creek sinter (Bodie Hills volcanic field, California and Nevada): 4D evolution of a geomorphically intact siliceous hot spring deposit. Journal of Volcanology and Geothermal Research 370, 6581.10.1016/j.jvolgeores.2018.12.006CrossRefGoogle Scholar
Channing, A. & Edwards, D. 2004. Experimental taphonomy: silicification of plants in Yellowstone hot-spring environments. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 94, 503–21.10.1017/S0263593300000845CrossRefGoogle Scholar
Channing, A. & Edwards, D. 2009. Silicification of higher plants in geothermally influenced wetlands: Yellowstone as a Lower Devonian Rhynie analog. PALAIOS 24, 505–21.10.2110/palo.2008.p08-131rCrossRefGoogle Scholar
Channing, A. & Edwards, D. 2013. Wetland megabias: ecological and ecophysiological filtering dominates the fossil record of hot spring floras. Palaeontology 56, 523–56.10.1111/pala.12043CrossRefGoogle Scholar
Channing, A., Schweitzer, M. H., Horner, J. R. & McEneaney, T. 2005. A silicified bird from quaternary hot spring deposits. Proceedings of the Royal Society B: Biological Sciences 272, 905–11.10.1098/rspb.2004.2989CrossRefGoogle ScholarPubMed
Davis, P. G. & Briggs, D. E. 1995. Fossilization of feathers. Geology 23, 783–86.10.1130/0091-7613(1995)023<0783:FOF>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Des Marais, D. J. & Walter, M. R. 2019. Terrestrial hot spring systems: Introduction. Astrobiology 19, 1419–32.10.1089/ast.2018.1976Google ScholarPubMed
Dunlop, J. A. & Garwood, R. J. 2018. Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences 373, 20160493.10.1098/rstb.2016.0493CrossRefGoogle ScholarPubMed
Feo, T. J., Field, D. J. & Prum, R. O. 2015. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proceedings of the Royal Society B: Biological Sciences 282, 20142864.10.1098/rspb.2014.2864CrossRefGoogle ScholarPubMed
Foth, C., Tischlinger, H. & Rauhut, O. W. M. 2014. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511, 7982.10.1038/nature13467CrossRefGoogle ScholarPubMed
Garwood, R. J., Oliver, H. & Spencer, A. R. T. 2020. An introduction to the Rhynie chert. Geological Magazine 157, 4764.10.1017/S0016756819000670CrossRefGoogle Scholar
Godefroit, P., Sinitsa, S. M., Dhouailly, D., Bolotsky, Y. L., Sizov, A. V., McNamara, M. E., Benton, M. J. & Spagna, P. 2014. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science (New York, N.Y.) 345, 451–55.10.1126/science.1253351Google ScholarPubMed
Guido, D. M. & Campbell, K. A. 2011. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research 203, 3547.10.1016/j.jvolgeores.2011.04.001CrossRefGoogle Scholar
Guido, D. M., Channing, A., Campbell, K. A. & Zamuner, A. 2010. Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina. Journal of the Geological Society 167, 1120.10.1144/0016-76492009-109CrossRefGoogle Scholar
Guidry, S. A. & Chafetz, H. S. 2003. Anatomy of siliceous hot springs: examples from Yellowstone National Park, Wyoming, USA. Sedimentary Geology 157, 71106.10.1016/S0037-0738(02)00195-1CrossRefGoogle Scholar
Hetherington, A. J. & Dolan, L. 2018. Stepwise and independent origins of roots among land plants. Nature 561, 235–38.10.1038/s41586-018-0445-zGoogle ScholarPubMed
Hinman, N. W. & Walter, M. R. 2005. Textural preservation in siliceous hot spring deposits during early diagenesis: examples from Yellowstone National Park and Nevada, U.S.A. Journal of Sedimentary Research 75, 200–15.10.2110/jsr.2005.016CrossRefGoogle Scholar
Ji, Q. & Ji, S. 1996. On the discovery of the earliest fossil bird in China (Sinosauropteryx gen. nov.) and the origin of birds. Chinese Geology 233, 3033.Google Scholar
Jones, B. & Renaut, R. W. 2003. Hot spring and geyser sinters: the integrated product of precipitation, replacement, and deposition. Canadian Journal of Earth Sciences 40, 1549–69.10.1139/e03-078CrossRefGoogle Scholar
Jones, B., Renaut, R. W. & Rosen, M. R. 1999a. Actively growing siliceous oncoids in the Waiotapu geothermal area, North Island, New Zealand. Journal of the Geological Society 156, 89103.10.1144/gsjgs.156.1.0089CrossRefGoogle Scholar
Jones, B., Renaut, R. W. & Rosen, M. R. 1999b. Role of fungi in the formation of siliceous coated grains, Waiotapu geothermal area, North Island, New Zealand. PALAIOS 14, 475–92.10.2307/3515398CrossRefGoogle Scholar
Jones, B., Renaut, R. W. & Rosen, M. R. 2001. Taphonomy of silicified filamentous microbes in modern geothermal sinters – implications for identification. PALAIOS 16, 580–92.10.1669/0883-1351(2001)016<0580:TOSFMI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Jones, B., Renaut, R. W. & Rosen, M. R. 2003. Taxonomic fidelity of silicified filamentous microbes from hot-spring systems in the Taupo Volcanic Zone, North Island, New Zealand. Transactions of the Royal Society of Edinburgh: Earth Sciences 94, 475–83.10.1017/S0263593300000821CrossRefGoogle Scholar
Kamarudin, N. B., Sharma, S., Gupta, A., Kee, C. G., Chik, S. M. S. B. T. & Gupta, R. 2017. Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech 7, 127.10.1007/s13205-017-0767-9Google ScholarPubMed
Kulp, F. B., D'Alba, L., Shawkey, M. D. & Clarke, J. A. 2018. Keratin nanofiber distribution and feather microstructure in penguins. The Auk 135, 777–87.10.1642/AUK-18-2.1CrossRefGoogle Scholar
Longrich, N. R., Vinther, J., Meng, Q., Li, Q. & Russell, A. P. 2012. Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi. Current Biology 22, 2262–67.10.1016/j.cub.2012.09.052CrossRefGoogle ScholarPubMed
Massini, J. G., Escapa, I. H., Guido, D. M. & Channing, A. 2016. First glimpse of the silicified hot spring biota from a new Jurassic chert deposit in the Deseado Massif, Patagonia, Argentina. Ameghiniana 53, 205–30.10.5710/AMGH.26.01.2016.2916CrossRefGoogle Scholar
McKellar, R. C., Chatterton, B. D. E., Wolfe, A. P. & Currie, P. J. 2011. A diverse assemblage of Late Cretaceous dinosaur and bird feathers from Canadian amber. Science (New York, N.Y.) 333, 1619–22.10.1126/science.1203344CrossRefGoogle ScholarPubMed
Mountain, B. W., Benning, L. G. & Boerema, J. A. 2003. Experimental studies on New Zealand hot spring sinters: rates of growth and textural development. Canadian Journal of Earth Sciences 40, 1643–67.10.1139/e03-068CrossRefGoogle Scholar
Orange, F., Lalonde, S. V. & Konhauser, K. O. 2013. Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems. Astrobiology 13, 163–76.10.1089/ast.2012.0887CrossRefGoogle ScholarPubMed
Pan, Y., Zheng, W., Sawyer, R. H., Pennington, M. W., Zheng, X., Wang, X., Wang, M., Hu, L., O'Connor, J., Zhao, T., Li, Z., Schroeter, E. R., Wu, F., Xu, X., Zhou, Z. & Schweitzer, M. H. 2019. The molecular evolution of feathers with direct evidence from fossils. Proceedings of the National Academy of Sciences 116, 3018–23.10.1073/pnas.1815703116CrossRefGoogle ScholarPubMed
Perrichot, V., Marion, L., Néraudeau, D., Vullo, R. & Tafforeau, P. 2008. The early evolution of feathers: fossil evidence from cretaceous amber of France. Proceedings of the Royal Society B: Biological Sciences 275, 1197–202.10.1098/rspb.2008.0003CrossRefGoogle Scholar
Pope, J. & Brown, K. L. 2014. Geochemistry of discharge at Waiotapu geothermal area, New Zealand – trace elements and temporal changes. Geothermics 51, 253–69.10.1016/j.geothermics.2014.01.006CrossRefGoogle Scholar
Pope, J. G., McConchie, D. M., Clark, M. D. & Brown, K. L. 2004. Diurnal variations in the chemistry of geothermal fluids after discharge, Champagne Pool, Waiotapu, New Zealand. Chemical Geology 203, 253–72.10.1016/j.chemgeo.2003.10.004CrossRefGoogle Scholar
Rauhut, O. W. M., Carballido, J. L. & Pol, D. 2015. A diplodocid sauropod dinosaur from the Late Jurassic Cañadón Calcáreo Formation of Chubut, Argentina. Journal of Vertebrate Paleontology 35, e982798.10.1080/02724634.2015.982798CrossRefGoogle Scholar
Rauhut, O. W. M. & Pol, D. 2019. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Scientific Reports 9, 18826.10.1038/s41598-019-53672-7CrossRefGoogle ScholarPubMed
Schweitzer, M. H. 2011. Soft tissue preservation in terrestrial Mesozoic vertebrates. Annual Review of Earth and Planetary Sciences 39, 187216.10.1146/annurev-earth-040610-133502CrossRefGoogle Scholar
Schweitzer, M. H., Zheng, W., Moyer, A. E., Sjövall, P. & Lindgren, J. 2018. Preservation potential of keratin in deep time. PLoS ONE 13, e0206569.10.1371/journal.pone.0206569CrossRefGoogle ScholarPubMed
Toporski, J. K. W., Steele, A., Westall, F., Thomas-Keprta, K. L. & McKay, D. S. 2002. The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2, 126.10.1089/153110702753621312CrossRefGoogle Scholar
Wetmore, A. 1943. The occurrence of feather impressions in the Miocene deposits of Maryland. The Auk 60, 440–1.10.2307/4079268CrossRefGoogle Scholar
Xing, L., Cockx, P. & McKellar, R. C. 2020. Disassociated feathers in Burmese amber shed new light on mid-cretaceous dinosaurs and avifauna. Gondwana Research 82, 241–53.10.1016/j.gr.2019.12.017CrossRefGoogle Scholar
Xu, X. & Guo, Y. 2009. The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47, 19.Google Scholar
Xu, X., Zhou, Z., Dudley, R., Mackem, S., Chuong, C.-M., Erickson, G. M. & Varricchio, D. J. 2014. An integrative approach to understanding bird origins. Science (New York, N.Y.) 346, 1253293.10.1126/science.1253293CrossRefGoogle ScholarPubMed
Yang, S., Xu, Y. & Zhang, D. 2006. Morphological basis for the waterproof characteristic of bird plumage. Journal of Forestry Research 17, 163–66.10.1007/s11676-006-0039-8CrossRefGoogle Scholar
Zhang, F., Zhou, Z. & Dyke, G. 2006. Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geological Journal 41, 395404.Google Scholar
Zheng, X., Zhou, Z., Wang, X., Zhang, F., Zhang, X., Wang, Y., Wei, G., Wang, S. & Xu, X. 2013. Hind wings in basal birds and the evolution of leg feathers. Science (New York, N.Y.) 339, 1309–12.10.1126/science.1228753Google ScholarPubMed