Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T22:56:05.177Z Has data issue: false hasContentIssue false

Lift based mechanisms for swimming in eurypterids and portunid crabs

Published online by Cambridge University Press:  03 November 2011

Roy E. Plotnick
Affiliation:
Department of Geological Sciences, University of Illinois at Chicago, Box 4348, Chicago, Illinois 60680, U.S.A.

Abstract

The striking morphological similarity that exists between appendages of the extant portunid crabs, such as Callinectes sapidus, and those of the extinet eurypterids has long been noted. The fifth pair of pereiopods in blue crags and other portunids are modified to form the broad, flat, highly mobile ‘swim paddles.’ A nearly identical modification is seen in the sixth pair of prosomal appendages of many eurypterids. The similarities are due to convergence and not to shared descent.

The kinetics of blue crab swimming were studied using high speed films. The animals are capable of slow upwards locomotion (‘hovering’) and rapid sideways swimming. The blue crab paddles apparently act as reciprocating hydrofoils, employing well-understood principles of lift and thrust generation to overcome the animal's weight and drag. Experimental studies indicated that the paddles are capable of producing appreciable amounts of lift. Drag on the body and paddles was also determined. Resxults are similar to those obtained in previous studies of bird and insect flight.

The physical principles employed to study blue crab swimming can be applied to the study of eurypterid locomotion. The eurypterid paddles may have functioned as hydrofoils, producing lift and thrust on forestroke and backstroke. Eurypterids were probably highly agile and manoueverable swimmers, capable of hovering and of high speed swimming. This model predicts observed morphological correlates. Predicted morphological correlates of earlier models (often based on analogies with Limulus) were not found.

The observed convergence between eurypterids and blue crabs may have resulted from similar functional constraints and parallel phylogenetic histories.

Type
Structure and function
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergstrom, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In Gupta, A. P. (ed.) Arthropod Phytogeny, 356. New York: Van Nostrand Reinhold.Google Scholar
Blake, R. W. 1981. Mechanics of drag based mechanisms of propulsion in aquatic vertebrates. SYMP ZOOL SOC LONDON 48, 2952.Google Scholar
Blake, R. W. 1983. Fish Locomotion. Cambridge: Cambridge University Press.Google Scholar
Blundon, J. A. & Kennedy, V. S. 1982. Mechanical & behavioral aspects of blue crab (Callinectes sapidus) predation on Chesapeake Bay bivalves. J EXP MAR BIOL ECOL 65, 4766.CrossRefGoogle Scholar
Briggs, D. E. & Williams, S. H. 1981. The restoration of flattened fossils. LETHAIA 14, 157–64.CrossRefGoogle Scholar
Cisne, J. L. 1974. Evolution of the world fauna of aquatic freeliving arthropods. EVOLUTION 28, 337–66.CrossRefGoogle ScholarPubMed
Cisne, J. L. 1982. Origin of the Crustacea. In Abele, L. G. (ed.) The Biology of Crustacea, Vol. 1: Systematics, the Fossil Record, and Biogeography, 6592. San Francisco: Academic Press.Google Scholar
Clark, B. D. & Bemis, W. 1979. Kinematics of swimming of penguins at the Detroit Zoo. J ZOOL LONDON 188, 411–28.CrossRefGoogle Scholar
Clarke, J. M. & Ruedemann, R. 1912. The Eurypterida of New York. MEM NEW YORK STATE MUS NAT HIST 14.Google Scholar
Cochran, D. M. 1935. The skeletal musculature of the blue crab Callinectes sapidus Rathburn. SMITHSON MISC COLLECT 92, 176.Google Scholar
Cowen, R. 1979. Functional morphology. In Fairbridge, R. & Jablonski, D. (eds) The Encyclopedia of Paleontology, 487–92. Stroudsburg, Pa.: Dowden, Hutchinson & Ross.CrossRefGoogle Scholar
Davenport, J., Munk, S. & Oxford, P. J. 1984. A comparison of the swimming of marine and freshwater turtles. PROC R SOC LONDON B 220, 447–75.Google Scholar
Ellington, C. P. 1984. The aerodynamics of hovering insect flight. PHILOS TRANS R SOC LONDON B 305, 1181.Google Scholar
Fisher, D. C. 1975. Swimming and burrowing in Limulus and Mesolimulus. FOSSILS STRATA 4, 281–90.CrossRefGoogle Scholar
Fisher, D. C. 1977. Functional significance of spines in the Pennsylvanian horseshoe crab Euproops danae. PALEOBIOLOGY 3, 175–95.CrossRefGoogle Scholar
Hall, J. E. 1859. The Paleontology of New York, Vol. III.Google Scholar
Hanken, N. M. & Størmer, L.. 1975. The trail of a large Silurian eurypterid. FOSSILS STRATA 4, 255–70.CrossRefGoogle Scholar
Hartnoll, R. G. 1971. The occurrence, methods, and significance of swimming in the Brachyura. ANIM BEHAV 19, 3450.CrossRefGoogle Scholar
Hessler, R. R. 1981. Evolution of arthropod locomotion; a crustacean model. In Herreid, C. F. and Fourtner, C. R. (eds) Locomotion and Energetics in Arthropods, 930. New York: Plenum.CrossRefGoogle Scholar
Hessler, R. R. 1982. The structural morphology of walking mechanisms in Eumalacostracan crustaceans. PHILOS TRANS R SOC LONDON B 296, 245–98.Google Scholar
Holm, G. 1898. Über die Organisation des Eurypterus Fischeri Eichw. MEM ACAD SCI ST PETERSBOURG 8, 157.Google Scholar
Hoyle, G. & Burrows, M. 1973. Correlated physiological and ultrastructural studies on specialized muscles. IIIa. Neuromuscular physiology of the power-stroke muscle of Portunus sanguinolentus. J EXP ZOOL 185, 8396.CrossRefGoogle Scholar
Kjellesvig-Waering, E. N. 1964. A synopsis of the family Pterygotidae Clarke & Ruedemann 1912. (Eurypterida). J PALEONTOL 38, 331–61.Google Scholar
Kjellesvig-Waering, E. N. 1979. Eurypterida. In Fairbridge, R. & Jablonski, D. (eds) The Encyclopedia of Paleontology, 290295Stroudsburg, Pa: Dowden, Hutchinson & Ross.CrossRefGoogle Scholar
Kühl, H. 1933. Die Fortbewegung der Schwimmkrabben mit Bezug auf die Plastizität Nervensystems. Z VGL PHYSIOL 19, 489521.CrossRefGoogle Scholar
Lauder, G. V. 1981. Form and function, structural analysis in evolutionary morphology. PALEOBIOLOGY 7, 430–42.CrossRefGoogle Scholar
Lighthill, M. J. 1969. Hydromechanics of aquatic animal propulsion. ANNU REV FLUID MECH 1, 413–46.CrossRefGoogle Scholar
Lighthill, J. 1975. Aerodynamic aspects of animal flight. In Wu, T. Y., Brokan, C. J. & Brennen, C. (eds) Swimming and Flying in Nature, Vol. 2, 423–92. New York: Plenum Press.CrossRefGoogle Scholar
Lochhead, J. H. 1977. Unsolved problems of interest in the locomotion of Crustacea. In Pedley, T. J. (ed.) Scale Effects in Animal Locomotion, 257–68. New York: Academic Press.Google Scholar
MacConail, M. S. & Basmagian, J. V. 1969. Muscles and Movements. Boston: Williams and Wilkens.Google Scholar
Nachtigall, W. 1977. Swimming mechanisms and energetics of locomotion of variously sized water beetles-Dyttiscidae, body length 2 to 35 mm. In Pedley, T. J. (ed.) Scale Effects in Animal Locomotion, 269–83. London: Academic Press.Google Scholar
Nachtigall, W. 1981. Hydromechanics and biology. BIOPHYS STRUCT MECH 8, 122.CrossRefGoogle ScholarPubMed
Plotnick, R. E. 1982. Swimming in blue crabs and eurypterids. GEOL SOC AM ABSTR PROGRAMS 14, 589.Google Scholar
Plotnick, R. E. 1983. Patterns in the Evolution of the Eurypterids. Unpublished PhD thesis: University of Chicago.Google Scholar
Robinson, J. A. 1975. The locomotion of plesiosaurs. NEUES JAHRB GEOL PALEONTOL ABH 149, 286322.Google Scholar
Schäfer, W. 1954. Form und Funktion der Brachyuran-Schere. ABH SENCKENBERGIANA NATURFORSCH GES 489, 165.Google Scholar
Schmidt-Nielsen, K. 1983. Animal Physiology: Adaptation and Environment, 3rd edn. Cambridge: Cambridge University Press.Google Scholar
Schram, F. R. 1982. The fossil record and the evolution of Crustacea. In, Abele, L. G. (ed.) The Biology of Crustacea, Vol. 1: Systematics, the Fossil Record, and Biogeography, 93147. San Francisco: Academic Press.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. LETHAIA 3, 393–6.CrossRefGoogle Scholar
Selden, P. A. 1981. Functional morphology of the prosoma of Baltoeurypterus tetraganophthalmus (Fischer). TRANS R SOC EDINBURGH: EARTH SCI 72, 948.CrossRefGoogle Scholar
Snodgrass, R. E. 1965. A Textbook of Arthopod Anatomy. New York: Hafner.Google Scholar
Spaargaeren, D. H. 1979. Hydrodynamic properties of benthic marine Crustacea. MAR ECOL: PROG SER 1, 351–9.CrossRefGoogle Scholar
Spirito, C. P. 1972. An analysis of swimming behavior in the portunid crab Callinectes sapidus. MAR BEHAV PHYSIOL 1, 261–76.CrossRefGoogle Scholar
Stephenson, W. 1962. Evolution and ecology of portunid crabs, with especial reference to Australian species. In Leeper, G. W. (ed.) The Evolution of Living Organisms, 311–27. Melbourne: Melbourne University Press.Google Scholar
Størmer, L. 1934. Merostomata from the Downtonian sandstone of Ringerike, Norway, SKR NOR VIDENSK-AKAD MATNATURVIDENSK KL 10, 1125.Google Scholar
Størmer, L. 1936. Eurypteridan aus dem Rheinsichen Unterdevon. ABH PREUSS GEOL LANDESANST 175, 174.Google Scholar
Størmer, L. 1973. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 3. Eurypterida, Hughmilleridae. SENCKENBERGIANA LETHAEA 54, 119205.Google Scholar
Thomas, R. D. K. 1979 Constructional morphology. In Fairbridge, R. & Jablonski, D. (eds) The Encyclopedia of Paleontology, 482–7. Stroudsburg, PA.: Dowden, Hutchinson & Ross.CrossRefGoogle Scholar
Vogel, S. 1981. Life in Moving Fluids. Boston: Willard Grant.Google Scholar
Vogel, S. & LaBarbera, M. 1978. Simple flow tanks for research and teaching. BIOSCIENCE 28, 638–43.CrossRefGoogle Scholar
Waterston, C. D. 1975. Gill structures in the lower Devonian eurypterid Tarsopterella scotica. FOSSILS STRATA 4, 241–54.CrossRefGoogle Scholar
Webb, P. W. 1982. Locomotor patterns in the evolution of Actinopterygian fishes. AM ZOOL 22, 329–42.CrossRefGoogle Scholar
Webb, P. W. 1984. Form and function in fish swimming. SCI AM 251, 7282.CrossRefGoogle Scholar
Weis-Fogh, T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J EXP BIOL 59, 169230.CrossRefGoogle Scholar
White, A. Q. & Spirito, C. P. 1973. Anatomy and physiology of the swimming leg musculature in the blue crab Callinectes sapidus. MAR BEHAV PHYSIOL 2, 141–53.CrossRefGoogle Scholar
Williams, A. B. 1973. The swimming crabs of the genus Callinectes (Decapoda, Portunidae). FISH BULL 72, 685798.Google Scholar
Wills, L. J. 1965. A supplement to Gerhard Holm's ‘Über die Organisation des Eurypterus fischeri Eichw.’ with special references to the organs of sight, respiration & reproduction. ARK ZOOL 18, 93145.Google Scholar