Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T23:30:24.185Z Has data issue: false hasContentIssue false

A Palaeocene intracanyon-style lava emplaced during the early shield-building stage of the Cuillin Volcano, Isle of Skye, NW Scotland

Published online by Cambridge University Press:  29 November 2013

Brian R. Bell
Affiliation:
School of Geographical & Earth Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland. Email: brian.bell@glasgow.ac.uk
Ian T. Williamson
Affiliation:
Formerly British Geological Survey & NaturalEngland. Email: ian@greenbee.net

Abstract

The twin summits of Preshal More and Preshal Beg, near Talisker, Isle of Skye, comprise the erosional remnants of a thick (at least 120 m) compound olivine tholeiite lava, or flow field, that ponded in palaeo-valleys within the Palaeocene lava field of west-central Skye. This unique flow field constitutes the Talisker Formation and is the youngest preserved extrusive unit of the Skye Lava Field. The lava inundated a complex of palaeo-valleys incised into the higher stratigraphical levels of the existing lava field, and remnants of the original sedimentary fill of these valleys still exist, the Preshal Beg Conglomerate Formation. The lava displays spectacularly well-developed two-tier (colonnade-entablature) columnar joint sets that formed as a consequence of slow, uninterrupted cooling through its base and sidewalls, aided by groundwater circulation and water ingress (from displaced drainage) directed into the lava's interior by master-joint systems. Intrusive phenomena developed at both the base and the top of the lava and there is evidence for the existence of subsurface feeder tubes. The tholeiitic composition of the Talisker Formation lava contrasts with the transitional, mildly alkaline characteristics of the remainder of the (older) lavas of Skye Lava Field. In broad terms, the Talisker Formation lava is compositionally very similar to the suite of cone-sheets emplaced into the oldest of the four intrusive centres that comprise the Skye Central Complex – the Cuillin Intrusive Centre – together with a high proportion of the Skye regional dyke swarm. The stratigraphical position, field relationships and compositional characteristics of the lava indicate that it was erupted and emplaced as an intracanyon-style flow field during the early shield-building stage in the growth of the (tholeiitic) Cuillin Volcano, which post-dates the main Skye ‘plateau’ Lava Field. Although the remnant outcrops are detached from their likely source area through erosion, this tholeiitic lava provides the first direct evidence linking the central complexes of the British Palaeogene Igneous Province and their eruptive products.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

12. References

Anderson, F. W. & Dunham, K. C. 1966. The Geology of Northern Skye. Memoir, Geological Survey of Great Britain. Edinburgh: HMSO for the British Geological Survey.Google Scholar
Anderson, J. L. 1980. Pomona Member of the Columbia River Basalt Group; an intracanyon flow in the Columbia River Gorge, Oregon. Oregon Geology 42(12), 195–99.Google Scholar
Anderson, J. L. & Vogt, B. F. 1987. Intracanyon flows of the Columbia River Basalt Group in the southwestern part of the Columbia Plateau and adjacent Cascade Range, Oregon and Washington. Washington Division of Geology and Earth Resources Bulletin 77, 249–67.Google Scholar
Anderson, S. W., Stofan, E. R., Smrekar, S. E., Guest, J. E. & Wood, B. 1999. Pulsed inflation of pāhoehoe lava flows: implications for flood basalt emplacement. Earth and Planetary Science Letters 168, 718.Google Scholar
Arguden, A. T. & Rodolfo, K. S. 1990. Sedimentological and dynamic differences between hot and cold laharic debris flows of Mayon Volcano, Philippines. Geological Society of America Bulletin 102, 865–76.2.3.CO;2>CrossRefGoogle Scholar
Atkinson, A., Griffin, T. J. & Stephenson, P. J. 1975. A major lava tube system from Undara Volcano, North Queensland. Bulletin of Volcanology 39, 266–93.Google Scholar
Aubele, J. C., Crumpler, L. S. & Elston, W. E. 1988. Vesicle zonation and vertical structure of basalt flows. Journal of Volcanology and Geothermal Research 35, 349–74.CrossRefGoogle Scholar
Auerbach, D. 2004. Volcanism in a dying rift zone, Vatnsdalsfjall, Iceland. Field Description. In Iceland Section of the 17th Keck Symposium Volume, Washington and Lee University (April 2004). See also webfile at: www.keckgeology.org/files/pdf/symvol/17th/Iceland/Auerbach.pdf Google Scholar
Bailey, E. B., Clough, C. T., Wright, W. B., Richey, J. E. & Wilson, G. V. 1924. Tertiary and Post-Tertiary Geology of Mull, Loch Aline, and Oban. A Description of Parts of Sheets 43, 44, 31, and 52 of the Geological Map. Memoirs of the Geological Survey of Scotland. Edinburgh: HMSO. 445 pp.Google Scholar
Bailey, M. M. 1989. Revisions to stratigraphic nomenclature of the Picture Gorge Basalt Subgroup, Columbia River Basalt Group. In Reidel, S. P. & Hooper, P. R. (eds) Volcanism and tectonism in the Columbia River flood-basalt province. Geological Society of America, Special Paper 239, 6784.Google Scholar
Baker, V. R. 1988. Evolution of valleys dissecting volcanoes on Mars and Earth. In Howard, A. D., Kochel, R. C. & Holt, H. E. (eds) Sapping features of the Colorado Plateau: A Comparative Planetary Geology Field Trip Guide. Washington, DC: National Space Administration (NASA).Google Scholar
Baker, V. R. & Gulick, V. C. 1987. Valley development on Hawaiian Volcanoes. Technical Memorandum 89810. Washington, DC: National Space Administration (NASA).Google Scholar
Baksi, A. K., Byerly, G. R., Chan, L -H. & Farrar, E. 1994. Intracanyon flows in the Deccan province, India? Case history of the Rajahmundry Traps. Geology 22, 605–08.Google Scholar
Bartrum, J. A. 1930. Pillow lavas and columnar fan-structures at Muriwai, Auckland, New Zealand. Journal of Geology 38, 447–55.Google Scholar
Beeson, M. H., Perttu, R. & Perttu, J. 1979. The origin of the Miocene basalts of coastal Oregon and Washington: an alternative hypothesis. Oregon Geology 41(10), 159–66.Google Scholar
Beeson, M. H., Fecht, R., Reidel, S. P. & Tolan, T. L. 1985. Regional correlations within Frenchman Springs Member of the Columbia River Basalt Group: New insights into the middle Miocene tectonics of northwestern Oregon. Oregon Geology 47(8), 8796.Google Scholar
Beeson, M. H., Tolan, T. L. & Anderson, J. L. 1989. The Columbia River Basalt Group in western Oregon: geologic structures and other factors that controlled flow emplacement patterns. In Reidel, S. P. & Hooper, P. R. (eds) Volcanism and Tectonism in the Columbia River flood-basalt province. Geological Society of America, Special Paper 239, 223–46.CrossRefGoogle Scholar
Beeson, M. H. & Tolan, T. L. 1996. Columbia River basalt intracanyon flows in western Oregon and Washington: Ginkgo, Rosalia and Pomona flows. Geological Society of America. Cordillera Section Meeting, Field Trip Guide. 35 pp.Google Scholar
Bell, B. R., Claydon, R. V. & Rogers, G. 1994. The Petrology and Geochemistry of Cone-sheets from the Cuillin Igneous Complex, Isle of Skye: Evidence for Combined Assimilation and Fractional Crystallization during Lithospheric Extension. Journal of Petrology 35, 1,055–94.Google Scholar
Bell, B. R., Williamson, I. T., Head, F. E. & Jolley, D. W. 1996. On the origin of a reddened interflow bed within the Palaeogene lava field of North Skye. Scottish Journal of Geology 32, 117–26.CrossRefGoogle Scholar
Bell, B. R., Williamson, I. T. 2002. Tertiary Igneous Activity. In Trewin, N.H. (ed) The Geology of Scotland (4th Edition). Geological Society, London.Google Scholar
BGS. 2000. Minginish. Scotland Sheet 70. Solid and Drift Geology. 1:50 000. Keyworth, Nottingham: British Geological Survey.Google Scholar
Binns, P. E., Mcquillin, R. & Kenolty, N. 1974. The Geology of the Sea of the Hebrides. Report of the Institute of Geological Sciences (NERC) 73/14. London: HMSO.Google Scholar
Bishop, E. M. & Smith, G. A. 1990. A field guide to the geology of the Cove Palisades State Park and Deschutes Basin in central Oregon. Oregon Geology 52(1), 316.Google Scholar
Bjornsson, H., Bjorsson, S. & Sigurgeirsson, Th. 1982. Penetration of water into hot rock boundaries of magma at Grímsvötn. Nature 295, 580–81.Google Scholar
Bogue, R. & Hodge, E. T. 1940. Cascade andesites of Oregon. American Mineralogist 25(10), 627–65.Google Scholar
Bognaard, P. V. D. & Schmincke, H.-U. 1998. Chronology of Gran Canaria. In Weaver, P. P. E., Schmincke, H.-U., Firth, J. V. & Duffield, W. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 157, 127–40.Google Scholar
Bondre, N. R., Duraiswami, R. A & Dole, G. 2004. Morphology and emplacement of flows from the Deccan Volcanic Province, India. Bulletin of Volcanology 66, 2945.Google Scholar
Bonnichsen, B. & Kauffmann, D. F. 1987. Physical features of rhyolitic lava flows in the Snake River Plain volcanic province, southwestern Idaho. In Fink, J. H. (ed.) The emplacement of silicic domes and lava flows. Geological Society of America, Special Paper 212, 119–45.Google Scholar
Breda, A., Mellere, D. & Massari, F. 2007. Facies and processes in a Gilbert-delta-filled incised valley (Pliocene of Ventimiglia, NW Italy). Sedimentary Geology 200, 3155.Google Scholar
Brossy, C. C. 2006. Fluvial response to intra-canyon lava flows, Owyhee River, southeastern Oregon. MSc Thesis, Central Washington University, Ellensburg. 118 pp.Google Scholar
Brossy, C., Ely, L. L., O'Connor, J. E., Fenton, C., Grant, F., House, P. K. & Safran, E. 2006. Fluvial Response to Intra-canyon lava flows, Southeastern Oregon. Geological Society of America, Abstacts with Programs 38(7), 72.Google Scholar
Brown, D. J., Halohan, E. P. & Bell, B. R. 2009. Sedimentary and volcano-tectonic processes in the British Palaeocene Igneous Province: a review. Geological Magazine 146, 326–52.Google Scholar
Budkewitsch, P. & Robin, P. -Y. 1994. Modelling the evolution of columnar joints. Journal of Volcanology and Geothermal Research 59, 219–39.Google Scholar
Burton, C. J. & MacDonald, J. G. 2008. A field guide to the Geology of Madeira. Glasgow, UK: Glasgow Geological Society.Google Scholar
Bush, J. H., Otheberg, K. L. & Priebe, K. L. 1995, Onaway Member intracanyon Columbia River Basalt (CRB) flows, Latah County, Idaho. Geological Society of America, Abstracts with Programs 27(4), 5.Google Scholar
Byerly, G. R. & Swanson, D. A. 1978. Invasive Columbia River Basalt flows along the northwestern margin of the Columbia Plateau, north-central Washington. Geological Society of America, Abstracts with Programs 10, 98.Google Scholar
Byerly, G. R. & Swanson, D. A. 1987. The transition from subaerial to invasive lava flows, Grande Ronde Basalt, northwestern Columbia Plateau. Geological Society of America, Abstracts with Programs 19, 363.Google Scholar
Capra, L. & Macias, J. L. 2000. Pleistocene cohesive debris flows at Nevado de Toluca volcano, central Mexico. Journal of Volcanology and Geothermal Research 102, 149–68.Google Scholar
Carr, P. F. & Jones, B. G. 2001. The influence of palaeoenvironment and lava flux on the emplacement of submarine, near-shore Late Permian basalt lavas, Sydney Basin (Australia). Journal of Volcanology and Geothermal Research 112, 247–66.Google Scholar
Cas, R. A. F. & Wright, J. V. 1987. Volcanic Successions: Modern and ancient. London: Allen and Unwin. 544 pp.Google Scholar
Cashman, K. V., Pinkerton, K. V. & Stephenson, J. 1998. Introduction to special section: Long lava flows. Journal of Geophysical Research 103, 27,281–89.Google Scholar
Cashman, K. V., Thornber, C. & Kauahikaua, J. P. 1999. Cooling and crystallization of lava in open channels, and the transition of pāhoehoe lava to a'a. Bulletin of Volcanology 61, 306–23.Google Scholar
Chappell, W. M. 1936. The effect of Miocene lavas on the course of the Columbia River in central Washington. Journal of Geology 44, 701–16.Google Scholar
Chitwood, L. A. 1994. Inflated basaltic lava – examples of processes and landforms from central and southeast Oregon. Oregon Geology 56(1), 1121.Google Scholar
Clem, R. 1966. The distribution of “intracanyon” basalt flows in the Snake River canyon, Washington, between mile 41 and 86; an attempt to verify a textural method of distinguishing the “intracanyon” basalt. Northwest Science 40(1), 3738.Google Scholar
Crow, R. S., Karlstrom, K. E., Mcintosh, W., Peters, L. & Dunbar, N. 2007. History of Quaternary volcanism in western Grand Canyon based on LIDAR analysis, 40Ar/39Ar dating, and field studies: implications for flow stratigraphy, timing of volcanic events and lava dam stability. Geological Society of America, Abstracts with Programs 39(6), 185.Google Scholar
DeGraff, J. M. & Aydin, A. 1987. Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geological Society of America, Bulletin 99, 605–17.Google Scholar
Dickin, A. P., Jones, N. W., Thirlwall, M. F. & Thompson, R. N. 1987. A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Skye, Northwest Scotland. Contributions to Mineralogy and Petrology 96, 455–64.Google Scholar
Duffield, W. A. & Smith, G. I. 1978. Pleistocene river erosion and intracanyon lava flows near Little Lake, Inyo County, California. California Geology 31(4), 8189.Google Scholar
Emeleus, C. H., Allwright, E. A., Kerr, A. C. & Williamson, I. T. 1996. Red tuffs in the Palaeocene lava successions of the Inner Hebrides. Scottish Journal of Geology 32, 8389.Google Scholar
Emeleus, C. H. & Bell, B. R. 2005. British Regional Geology: The Palaeogene Volcanic Districts of Scotland (4th Edition). Nottingham: British Geological Survey.Google Scholar
England, R. W. 1994. The structure of the Skye Lava Field. Scottish Journal of Geology 30, 3338.Google Scholar
Esson, J., Dunham, A. C. & Thompson, R. N. 1975. Low Alkali, High Calcium Olivine Tholeiite Lavas from the Isle of Skye, Scotland. Journal of Petrology 16, 488–97.Google Scholar
Eyal, M., Becker, A. & Samoylov, V. 1996. Mt. Arod – An Early Cretaceous basanitic volcano with a fossil lava lake. Israel Journal of Earth Sciences 45, 3138.Google Scholar
Fuller, R. E. 1950. Structural features in the Columbia River Basalt. Northwest Science 24, 6573.Google Scholar
Fyfe, J. A., Long, D. & Evans, D. 1993. The geology of the Malin–Hebrides sea area. United Kingdom offshore regional report. London: HMSO for the British Geological Survey.Google Scholar
Geldmacher, J., Boggard, P., Hoernle, K. & Schmincke, H.-U. 2000. The 40Ar/39Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochemistry, Geophysics, Geosystems 1(2), 1008.Google Scholar
Glicken, H. 1991. Sedimentary architecture of large volcanic-debris avalanches. In Smith, G. A. & Fisher, R. V. (eds) Sedimentation in Volcanic Settings. SEPM, Tulsa, Special Publication 45, 99106.Google Scholar
Greeley, R., Fagents, S. A., Harris, R. S., Kadel, S. D. & Williams, D. A. 1998. Erosion by flowing lava: field evidence. Journal of Geophysical Research 103(B), 27,325–45.Google Scholar
Green, J. & Short, N. M. (eds) 1971. Volcanic landforms and surface features: A photographic atlas and glossary. Heidelberg: Springer-Verlag. 519 pp.Google Scholar
Green, R. C. 1968. Petrography and petrology of volcanic rocks in the Mount Jefferson area, High Cascade Range, Oregon. U.S. Geological Survey Bulletin G1G48.Google Scholar
Gulick, V. C. & Baker, V. R. 1990. Origin and evolution of valleys on Martian volcanoes. Journal of Geophysical Research: Solid Earth 95(B9), 14325–44.Google Scholar
Guillou, H., Torrado, F. J. P., Machin, A. R. H., Carracedo, J. C. & Gimeno, D. 2004. The Pliocene–Quaternary volcanic evolution of Gran Canaria based on new K–Ar ages and magnetostratigraphy. Journal of Volcanology and Geothermal Research 135, 221–46.Google Scholar
Hamblin, W. K. 1969. Late Cenozoic lava flows in the Grand Canyon of the Colorado River, Arizona. In Geology and natural history of the 5th Field Conference, Powell Centennial River Expedition, 1969, 4160. Durango, Colorado: Four Corners Geological Society.Google Scholar
Hamblin, W. K. 1994. Late Cenozoic Lava Dams in the Western Grand Canyon. Geological Society of America Memoir 13. 139 pp.Google Scholar
Hamilton, M. A., Pearson, D. G., Thompson, R. N., Kelley, S. P. & Emeleus, C. H. 1998. Rapid eruption of Skye lavas inferred from precise U–Pb and Ar–Ar dating of the Rum and Cuillin plutonic complexes. Nature 394, 260–63.Google Scholar
Harker, A. 1904. The Tertiary Igneous Rocks of Skye. Memoir, Geological Survey of Great Britain.Google Scholar
Harris, A. J. L. & Rowland, S. K. 2009 Effusion rate controls on lava flow length and the role of heat loss: a review. In Thordarson, T., Self, S., Larsen, G., Rowland, S. K. & Hoskuldsson, A. (eds) Studies in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI 2, 3351. London: The Geological Society.Google Scholar
Helz, R. T. 1987. Differentiation behaviour of Kilauea Iki lava lake, Hawaii: an overview of past and current work. In Mysen, B. O. (ed.) Magmatic Processes: Physiochemical Principles Geochemical Society Special Publication 1, 241–58.Google Scholar
Hildreth, W., Fierstein, J., Godoy, E., Drake, R. E. & Singer, B. 1999. The Puelche Volcanic Field: extensive Pleistocene rhyolite lava flows in the Andes of central Chile. Revista Geologica de Chile 26(2), 275309.Google Scholar
Hladky, F. R. 1998. Age, chemistry, and origin of capping lava at Upper Table Rock and Lower Table Rock, Jackson County, Oregon. Oregon Geology 60(4), 8191.Google Scholar
Hoffer, J. M. 1967. The Rock Creek Flow of Columbia River Basalt. Northwest Science 41(1), 2331.Google Scholar
Holden, G. S. & Hooper, P. R. 1976. Petrology and chemistry of a Columbia River basalt section, Rocky Canyon, west-central Idaho. Geological Society of America Bulletin 87, 215–25.Google Scholar
Holm, R. F. & Cloud, R. A. 1990. Regional significance of recurrent faulting and intracanyon volcanism at Oak Creek Canyon, southern Colorado Plateau, Arizona. Geology 18, 1,014–17.Google Scholar
Hon, K. A., Kauahikaua, J., Denlinger, R. & Mackay, K. 1994. Emplacement and inflation of pāhoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawai'i. Geological Society of America Bulletin 106, 351–70.Google Scholar
Hooper, P. R., Kleck, W. D., Knowles, C. R., Reidel, S. P. & Thiessen, R. L. 1984. Imnaha Basalt, Columbia River Basalt Group. Journal of Petrology 25, 473500.Google Scholar
Iddings, J. P. 1886. The columnar structure in the igneous rock on Orange Mountain, New Jersey. American Journal of Science 31, 321–31.Google Scholar
James, A. V. G. 1920. Factors producing columnar structure in lavas and its occurrence near Melbourne, Australia. Journal of Geology 27, 458–69.Google Scholar
Jay, A. E. & Widdowson, M. 2008. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. Journal of the Geological Society 165, 177–88.Google Scholar
Jefferson, A., Grant, G. E., Lewis, S. L. & Lancaster, S. T. 2010. Coevolution of hydrology and topography on a basal landscape in the Oregon Cascade Range, USA. Earth Surface Processses and Landforms 35, 803–16.Google Scholar
Jolley, D. W. 1997. Palaeosurface palynofloras of the Skye Lava Field, and the age of the British Tertiary Volcanic Province. In Widdowson, M. (ed) Palaeosurfaces: Recognition, Reconstruction and Interpretation. Geological Society, London, Special Publications 120, 6794.Google Scholar
Justus, P. S. 1978. Origin of curvi-columnar joints in basalt cooling units by fracture-controlled quenching. EOS (American Geophysical Union Transactions) (Abs.) 59(4), 379.Google Scholar
Kauahikaua, J. P., Cashman, C. V., Hon, T. N., Mattox, T. N., Heliker, C. C., Mangan, M. T. & Thornber, C. R. 1998. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i. Journal of Geophysical Research 103, 27,303–23.Google Scholar
Kent, R. W., Thomson, B. A., Skelhorn, R. R., Kerr, A. C., Norry, M. J. & Walsh, J. N. 1998. Emplacement of Hebridean Tertiary flood basalts: evidence from an inflated pāhoehoe lava flow on Mull, Scotland. Journal of the Geological Society, London 155, 599607.Google Scholar
Keszthelyi, L., Thordarson, T., McEwen, A., Haack, H., Guilbaud, M.-N., Self, S. & Rossi, M. J. 1994. Icelandic analogs to Martian flood lavas. Geochemistry, Geophysics, Geosystems (G3) 5(11). Q11014. Doi:10.1029/2004GC000758. American Geophysical Union and the Geochemical Society. 32 pp.Google Scholar
Keszthelyi, L. P. & Pieri, D. C. 1993. Emplacement of the 75-km-long Carrizozo lava flow field, south-central New Mexico. Journal of Volcanology and Geothermal Research 59, 5975.Google Scholar
Keszthelyi, L. & Self, S. 1998. Some physical requirements for emplacement of long basaltic lava flows. Journal of Geophysical Research 103(B), 27,447–64.Google Scholar
Kilburn, C. R. J. 2000. Lava flows and flow fields. In Sigurdsson, H. (ed) Encyclopaedia of Volcanoes, 291306. San Diego, California: Academic Press.Google Scholar
King, P. M. 1977. The secondary minerals of the Tertiary lavas of northern and central Skye – zeolite zonation patterns, their origin and formation. Unpublished PhD Thesis, University of Aberdeen, UK.Google Scholar
Lara, L. E., Naranjo, J. A. & Moreno, H. 2004. Lanin Volcano (39.5°S), Southern Andes: geology and morphostructural evolution. Revista Geologica de Chile 31(2), 241–57.Google Scholar
Lescinsky, D. T. & Fink, J. H. 2000. Lava and ice interaction at stratovolcanoes: Use of characteristic features to determine past glacial extents and future volcanic hazards. Journal of Geophysical Research 105(B), 23,711–26.Google Scholar
Lietz, J. & Schmincke, H.-U. 1975. Miocene–Pliocene sea-level changes and volcanic phases on Gran Canaria (Canary Islands) in the light of new K–Ar ages. Palaeogeography, Palaeoclimatology, Palaeoecology 18, 213–39.Google Scholar
Lohse, K. A. & Dietrich, W. E. 2005. Contrasting effects of soil development on hydrological properties and flow pathways. Water Resources Research 41, W12419.Google Scholar
Long, P. E. & Wood, B. J. 1986. Structures, textures and cooling histories of Columbia River basalt flows. Geological Society of America Bulletin 97, 1,144–55.Google Scholar
Long, P. E. & Wood, B. J. 1987. Structures, textures and cooling histories of Columbia River basalt flows. Reply. Geological Society of America, Bulletin 99, 887–88.Google Scholar
Lupher, R. L. & Warren, W. C. 1942. The Asotin Stage of the Snake River Canyon near Lewiston, Idaho. Journal of Geology 50, 866–81.Google Scholar
Lutton, R. J. 1969. Internal Structure of the Buckboard Mesa Basalt. Bulletin of Volcanology 33, 579–93.Google Scholar
Lyle, P. 2000. The eruption environment of multi-tiered columnar basalt lava flows. Journal of the Geological Society, London 157, 715–22.Google Scholar
Lyle, P. & Preston, J. 1993. Geochemistry and volcanology of the Tertiary basalts of the Giant's Causeway area, Northern Ireland. Journal of the Geological Society, London 150, 109–20.Google Scholar
Lyle, P. & Preston, J. 1998. The influence of eruptive conditions on joint development in the Causeway Tholeiite Member of the Tertiary, Antrim Lava Group, Northern Ireland. Irish Journal of Earth Sciences 16, 1932.Google Scholar
Macdonald, G. A. 1968. Forms and structures of extrusive basaltic rocks. In Hess, H. H. & Poldervaart, A. (eds) The Poldervaart Treatise on Rocks of Basaltic Composition, 161. London: Interscience.Google Scholar
Mackin, J. H. 1961. A stratigraphic section in the Yakima Basalt and the Ellensburg Formation in south-central Washington. Washington Division of Mines and Geology Report of Investigations 19. 45 pages.Google Scholar
Malin, M. C. 1980. Lengths of Hawaiian lava flows. Geology 8, 306–08.Google Scholar
Mangan, M. T., Wright, T. L., Swanson, D. A. & Byerly, G. R. 1986. Regional correlation of Grande Ronde Basalt flows, Columbia River Basalt Group, Washington, Oregon and Idaho. Geological Society of America Bulletin 97, 1,300–18.Google Scholar
Marshall, J. S. 2000. Active tectonics and Quaternary landscape evolution across the western Panama Block, Costa Rica, Central America. PhD Thesis, The Pennsylvania State University, College of Earth and Mineral Sciences, Pennsylvania, USA.Google Scholar
Mattey, D. P., Gibson, I. L., Marriner, G. F. & Thompson, R. N. 1977. The diagnostic geochemistry, relative abundance and spatial distribution of high-calcium, low-alkali olivine tholeiite dykes in the Lower Tertiary regional swarm of the Isle of Skye, NW Scotland. Mineralogical Magazine 41, 273–85.Google Scholar
McClanahan, P. M. 2004. The elusive intrusive: A petrologic, structural and geochemical analysis of a basaltic body in an abandoned rift, Vatnsdalsfjall, Northern Iceland. EOS Transactions of the American Geophysical Union 85, Fall Meeting Supplement Abstract V31B, 1440.Google Scholar
McClaughry, J. D., Ferns, M. L. & Gordon, C. L. 2009. Field trip guide to the Neogene stratigraphy of the Lower Crooked River Basin and the ancestral Crooked River, Crook County, Oregon. Oregon Geology 69, 4560.Google Scholar
McClaughry, J. D. & Ferns, M. L. 2006. Field trip guide to the geology of the Lower Crooked River Basin, Redmond and Prineville areas, Oregon. Oregon Geology 67(1), 1523.Google Scholar
McKee, E. D., Hamblin, W. K. & Damon, P. E. 1968. K–Ar age of lava dam in Grand Canyon. Geological Society of America Bulletin 79, 133–36.Google Scholar
Meighan, I. G., Hutchison, R., Williamson, I. T. & Macintyre, R. M. 1981. Geological evidence for the different relative ages of the Rum and Skye Tertiary central complexes. Journal of the Geological Society, London 139, 659.Google Scholar
Moorbath, S. & Thompson, R. N. 1980. Strontium isotope geochemistry and petrogenesis of the early Tertiary lava pile of the Isle of Skye, Scotland, and other basic rocks of the British Tertiary Province: an example of magma-crust interaction. Journal of Petrology 21, 295321.Google Scholar
Paris, R., Guillou, H., Carracedo, J. C. & Perez-Torrado, F. J. 2005. Volcanic and morphological evolution of La Gomera (Canary Islands), based on new K–Ar ages and magnetic stratigraphy: implications for oceanic island evolution. Journal of the Geological Society, London 162, 501–12.Google Scholar
Peate, I. U., Larsen, M. & Lesher, C. 2003. The transition from sedimentation to flood volcanism in the Kangerlussuaq Basin, East Greenland: basaltic pyroclastic volcanism during initial Palaeogene continental break-up. Journal of the Geological Society, London 160, 759–72.Google Scholar
Peck, D. L. 1978. Cooling and vesiculation of Alae lava lake, Hawaii. United States Geological Survey Professional Paper 935-B, 150.Google Scholar
Peck, D. L., Griggs, A. B., Schlicker, H. G., Wells, F. G. & Dole, H. M. 1964. Geology of the central and northern parts of the Western Cascade Range in Oregon. United States Geological Survey Professional Paper 449. 56 pp.Google Scholar
Peck, D. L., Wright, T. L. & Moore, J. G. 1966. Crystallisation of tholeiitic basalt in Alae lava lake, Hawaii. Bulletin of Volcanology 29, 629–55.Google Scholar
Peck, D. L. & Kinoshita, W. T. 1976. The Eruption of August 1963 and the Formation of Alae Lava Lake, Hawaii. United States Geological Survey Professional Paper 935-A. 33 pp.Google Scholar
Peck, D. L. & Minakami, T. 1968. The Formation of Columnar Joints in the Upper Part of Kilauean Lava Lakes, Hawaii. Geological Society of America Bulletin 79, 1,151–65.Google Scholar
Perez-Torrado, F. J., Carrecado, J. C. & Mangas, J. 1995. Geochronology and stratigraphy of the Roque Nublo Cycle, Gran Canaria, Canary Islands. Journal of the Geological Society, London 152, 807–18.Google Scholar
Peterson, D. W., Holcomb, R. T., Tilling, R. I. & Christiansen, R. L. 1994. Development of lava tubes in the light of observations at Mauna Ula, Liauea Volcano, Hawaii. Bulletin of Volcanology 56, 343–60.Google Scholar
Pinkerton, H. & Wilson, L. 1994. Factors controlling the lengths of channel-fed lava flows. Bulletin of Volcanology 56, 108–20.Google Scholar
Rawlings, D. J., Watkeys, M. K. & Sweeney, R. J. 1999. Peperitic upper margin of an invasive flow, Karoo flood basalt province, northern Lebombo. South African Journal of Geology 102, 377–83.Google Scholar
Reidel, S. P. 1978a. The stratigraphy and petrogenesis of the Grande Ronde Basalt in the lower Salmon and adjacent Snake River Canyons. PhD Thesis, Washington State University, Pullman. 415 pp.Google Scholar
Reidel, S. P. 1978b. The stratigraphy and petrogenesis of the Grande Ronde Basalt in the lower Salmon and adjacent Snake River Canyons. Rockwell International Corporation Technical Report RHO-SA-62. Richland, Washington: Rockwell Hanford Operations.Google Scholar
Reidel, S. P. 1998. Emplacement of Columbia River flood basalt. Journal of Geophysical Research 103(B), 27,393–410.Google Scholar
Reidel, S. P. & Tolan, T. L. 1992. Eruption and emplacement of flood basalt: An example from the large-volume Teepee Butte Member, Columbia River Basalt Group. Geological Society of America Bulletin 104, 1,650–71.Google Scholar
Reubi, O., Ross, P.-S. & White, J. D. L. 2005. Debris avalanche deposits associated with large igneous province volcanism: An example from the Mawson Formation, central Allan Hills, Antarctica. Geological Society of America, Bulletin 117, 1,615–28.Google Scholar
Rodolfo, K. S. & Arguden, A. T. 1991. Rain-lahar generation and sediment-delivery systems at Mayon Volcano, Philippines. In Fisher, R. V. & Smith, G. A. (eds) Sedimentation in Volcanic Settings. SEPM (Society for Sedimentary Geology) Special Publication 45, 7188.Google Scholar
Ross, M. E. 1989. Stratigraphic relationships of subaerial, invasive and intracanyon flows of Saddle Mountains Basalt in the Troy Basin, Oregon and Washington. In Reidel, S. P. & Hooper, P. R. (eds) Volcanism and tectonism in the Columbia River flood-basalt province. Geological Society of America, Special Paper 239, 131–42.Google Scholar
Rossi, M. J. & Gudmundsson, A. 1996. The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. Journal of Volcanology and Geothermal Research 72, 291308.Google Scholar
Rowland, S. K. & Walker, G. P. L. 1990 Pahoehe and a'a in Hawaii: Volumetric flow rate controls the lava structure. Bulletin of Volcanology 52, 615–28.Google Scholar
Ryan, M. P. & Sammis, C. G. 1978. Cyclic fracture mechanisms in cooling basalt. Geological Society of America Bulletin 89, 1,295–308.Google Scholar
Rymer, H., Cassidy, J., Locke, C. A., Barboza, M. V., Barquero, J., Brenes, J. & Laat, V. D. 2000. Geophysical studies of the recent 15 year eruptive cycle at Poas Volcano, Costa Rica. Journal of Volcanology and Geothermal Research 97, 425–42.Google Scholar
Saemundsson, K. 1970. Interglacial Lava Flows in the Lowlands of Southern Iceland and the Problem of Two-Tiered Columnar Jointing. Jokull 20, 6277.Google Scholar
Schwarz, S., Klugel, A. & Wohlgemuth-Ueberwasser, C. 2004. Melt extraction pathways and stagnation depths beneath the Maduera and Desertas rift zones (NE Atlantic) inferred from barometric studies. Contributions to Mineralogy and Petrology 147, 228–40.Google Scholar
Self, S., Finnemore, S., Thordarson, T. & Walker, G. P. L. 1991. Importance of compound lava and lava-rise mechanisms in emplacement of flood basalts. American Geophysical Union (Transactions) 72, 566–67.Google Scholar
Self, S., Thordarson, T., Keszthelyi, L., Walker, G. P. L., Hon, K., Murphy, M. T., Long, P. & Finnemore, S. 1996. A new model for the emplacement of Columbia River basalts as large, inflated pāhoehoe lava flow fields. Geophysical Research Letters 23, 2,689–92.CrossRefGoogle Scholar
Self, S., Thordarson, T. & Keszthelyi, L. 1997. Emplacement of continental flood basalt lava flows. In Mahoney, J. J. & Coffin, M. F. (eds) Large Igneous Provinces: Continental, Oceanic and Planetary Volcanism. American Geophysical Union Monographs 100, 381410.Google Scholar
Self, S., Keszthelyi, L. P., Thordarson, T. 1998. The importance of Pāhoehoe. Annual Review of Earth and Planetary Science 26, 81110.Google Scholar
Shaw, H. R. & Swanson, D. A. 1970. Eruption and flow rates of flood basalts. In Gilmore, E. H. & Stradling, D. F. (eds) Proceedings of the Second Columbia River Basalt Symposium, 271–99. Cheney, Washington: Eastern Washington State College Press.Google Scholar
Shervais, J. W. & Howard, K. A. 1975. Intracanyon basalts of the Boise River, Central Idaho. Geological Society of America, Abstracts with Programs 7(5), 640–41.Google Scholar
Skjelkvale, B. L., Amundsen, H. E. F., O'Reilly, S. Y., Griffin, W. L. & Jelsvik, T. 1989. A primitive alkali basaltic stratovolcano and associated eruptive centres, northwestern Spitsbergen: Volcanology and tectonic significance. Journal of Volcanology and Geothermal Research 37, 119.CrossRefGoogle Scholar
Smellie, J. L., Pankhurst, R. J., Hole, M. J. & Thomson, J. W. 1988. Age distribution and eruptive conditions of late Cenozoic alkaline volcanism in the Antarctic Peninsula and eastern Ellsworth Land: Review. Bulletin British Antarctic Survey 80, 2149.Google Scholar
Smellie, J. L., Hole, M. J. & Nell, P. A. R. 1993. Late Miocene valley-confined subglacial volcanism in northern Alexander Island, Antarctic Peninsula. Bulletin of Volcanology 55, 273–88.CrossRefGoogle Scholar
Smith, G. A. 1986. Coarse-grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geological Society of America Bulletin 97, 110.Google Scholar
Smith, G. A. & Lowe, D. R. 1991. Lahars: Volcano-hydrologic events and deposition in the debris flow – hyperconcentrated flow continuum. In Fisher, R. V. & Smith, G. A. (eds) Sedimentation in Volcanic Settings. SEPM (Society for Sedimentary Geology) Special Publication 45, 5970.Google Scholar
Smith, J. V. 1998. Interpretation of domainal groundmass textures in basalt lavas of the southern Lamington Volcanics, eastern Australia. Journal of Geophysical Research 103(B), 27,383–91.Google Scholar
Snavely, P. D., Macleod, N. S. & Wagner, H. C. 1973. Miocene Tholeiitic Basalts of Coastal Oregon and Washington and Their Relations to Coeval Basalts of the Columbia Plateau. Geological Society of America Bulletin 84, 387424.Google Scholar
Spry, A. 1962. The origin of columnar jointing, particularly in basalt flows. Journal Geological Society Australia 8, 191216.Google Scholar
Stephenson, P. J., Burch-Johnston, A. T., Stanton, D., Whitehead, P. W. 1998. Three long lava flows in north Queensland. Journal of Geophysical Research 103(B), 27,359–70.Google Scholar
Stephenson, P. J. & Griffin, T. J. 1976. Some long basaltic flows in North Queensland. In Johnson, R.W. (ed) Volcanism in Australasia, 4152. Amsterdam: Elsevier.Google Scholar
Swanson, D. A., Wright, T L. & Clem, R. 1975. Intracanyon flow of Yakima basalt along the Snake River, Southeast Washington. Geological Society of America, Abstracts with Programs 7(5), 645.Google Scholar
Swanson, D. A., Duffield, W. A., Jackson, D. B. & Peterson, D. W. 1972. The Complex Filling of Alae Crater, Kilauea Volcano, Hawaii. Bulletin of Volcanology 36, 105–26.Google Scholar
Swanson, D. A., Anderson, J. L., Bentley, R. D., Byerly, G. R., Camp, V. E., Gardner, J. N. & Wright, T. L. 1979. Reconnaissance geologic map of the Columbia River Basalt in eastern Washington and northern Idaho. United States Geological Survey Open-File Report 79–1363. Scale 1:250000.Google Scholar
Swanson, D. A., Anderson, J. L., Camp, V. E., Hooper, P. R., Taubeneck, W. H. & Wright, T. L. 1981. Reconnaissance geologic map of the Columbia River Basalt Group, northern Oregon and western Idaho. United States Geological Survey Open-File Report 81–797. Scale 1:250000.Google Scholar
Swanson, D. A., Wright, T. L. 1975. Intracanyon flow of Yakima basalt along the Snake River, Southeast Washington. United States Geological Survey, Professional Paper 975, 62.Google Scholar
Tanner, L. H. & Hubert, J. F. 1991. Basalt breccias and conglomerates in the Lower Jurassic McCoy Brook Formation, Fundy Basin, Nova Scotia: Differentiation of talus and debris-flow deposits. Journal of Sedimentary Petrology 61, 1527.Google Scholar
Thayer, T. P. 1936. Structure of the north Santiam River section of the Cascade Mountains in Oregon. Journal of Geology 44, 701–16.Google Scholar
Thompson, R. N. 1982. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology 18, 49107.Google Scholar
Thompson, R. N., Esson, J. & Dunham, A. C. 1972. Major element chemical variation in the Eocene lavas of Skye, Scotland. Journal of Petrology 13, 219–53.Google Scholar
Thordarson, T., Self, S. 1993. The Laki (Skáftar Fires) and Grímsvötn eruptions in 1783–1785. Bulletin of Volcanology 55, 233363.Google Scholar
Thordarson, T. & Self, S. 1998. The Roza Member, Columbia River Basalt Group: A gigantic pāhoehoe lava flow field formed by endogenous processes? Journal of Geophysical Research 103(B), 27,411–45.Google Scholar
Timm, S. 1979. The structure and stratigraphy of the Columbia River Basalt in the Hood River Valley, Oregon. MSs Thesis, Portland State University, Oregon. 126 pp.Google Scholar
Tolan, T. L. & Beeson, M. H. 1984. Intracanyon flows of the Columbia River Basalt Group in the lower Columbia River Gorge and their relationship to the Troutdale Formation. Geological Society of America Bulletin 95, 463–77.Google Scholar
Tolan, T. L., Beeson, M. H. & Vogt, B. F. 1984a. Exploring the Neogene history of the Columbia River: Discussion and geologic field trip guide to the Columbia River Gorge. Part 1. Discussion. Oregon Geology 46(8), 8797.Google Scholar
Tolan, T. L., Beeson, M. H. & Vogt, B. F. 1984b. Exploring the Neogene history of the Columbia River: Discussion and geologic field trip guide to the Columbia River Gorge. Part 2. Road log and comments. Oregon Geology 46(9), 103–12.Google Scholar
Tomkieff, S. I. 1940. The basalt lavas of the Giant's Causeway district of Northern Ireland. Bulletin of Volcanology 6, 89143.Google Scholar
Vallance, J. W. 2000. Lahars. In Sigurdsson, H. (ed.) Encyclopedia of Volcanoes, 601–16. San Diego, California: Academic Press.Google Scholar
Vogt, B. F. 1979. Columbia River Basalt Group stratigraphy and structure in the Bull Run Watershed, western Cascades, northern Oregon (Abstract). Proceedings of the Oregon Academy of Science 15(5), 52.Google Scholar
Vogt, B. F. 1981. The stratigraphy and structure of the Columbia River Basalt Group in the Bull Run Watershed, Oregon. MSc Thesis, Portland State University, Oregon. 151 pp.Google Scholar
Vye-Brown, C., Self, S. & Barry, T. L. 2013. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA. Bulletin of Volcanology 75, 697717.Google Scholar
Walker, G. P. L. 1973. Lengths of lava flows. Philosophical Transactions of the Royal Society, London A274, 107–18.Google Scholar
Walker, G. P. L. 1991. Structure and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bulletin of Volcanology 53, 546–58.Google Scholar
Walker, G. P. L. 1992. Morphometric study of pillow-size spectrum among pillow lavas. Bulletin of Volcanology 54, 459–74.Google Scholar
Walker, G. P. L. 1993a. Basaltic-volcano systems. In Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R. (eds) Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publication 76, 338.Google Scholar
Walker, G. P. L. 1993b. Re-evaluation of inclined intrusive sheets and dykes in the Cuillin volcano, Isle of Skye. In Pritchard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R. (eds) Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publication 76, 489–97.Google Scholar
Walker, G. P. L. 1995. Flood basalts versus central volcanoes and the British Tertiary Volcanic Province. In Le Bas, M. J. (ed.) Milestones in Geology. Geological Society, London, Memoir 16, 195202.Google Scholar
Waters, A. C. 1973. The Columbia River Gorge: Basalt stratigraphy, ancient lava dams and landslide dams. In Beaulieu, J. D. (ed.) Geologic Field Trips in Northern Oregon and Southern Washington. State of Oregon Department of Geology and Mineral Industries Bulletin 77, 133–62.Google Scholar
Waters, A. C., Myers, C. W., Brown, D. J. & Lockwood, R. K. 1981. Columbia Plateau with special emphasis on the basalt stratigraphy of the Pasco Basin. In Subbarao, K. V. & Sukheswala, R. N. (eds) Deccan Volcanism and related basalt provinces in other parts of the world. Geological Society of India Memoir, 3, 1944.Google Scholar
Weyl, R. 1975. Magmatische Forderphasen und Gesteinschmismus in Costa Rica (Mittleamerika). Neus Jahrbuch für Geologie und Paläontologie Abhandlungen 105, 123204.Google Scholar
Wells, R. E., Simpson, R. W., Bentley, R. D., Beeson, M. H., Mangan, M. T. & Wright, T. L. 1989. Correlation of Miocene flows of the Columbia River Basalt Group from the central Columbia River Plateau to the coast of Oregon and Washington. In Reidel, S. P. & Hooper, P. R. (eds) Volcanism and tectonism in the Columbia River flood-basalt province. Geological Society of America, Special Paper 239, 113–29.Google Scholar
Wells, R. E. & Niem, A. R. 1987. Geology of the Columbia River Basalt Group in the Astoria Basin, Oregon and Washington: evidence for invasive flows. Geological Society of America, Abstracts with Programs 19, 462–63.Google Scholar
Whitehead, P. W. & Stephenson, P. J. 1998. Lava rise ridges of the Toomba basalt flow, north Queensland, Australia. Journal of Geophysical Research 103(B), 27,371–82.Google Scholar
Wilkinson, W. D. (ed.) 1959. Field Guidebook to Geologic Trips along Oregon Highways. College Teachers Conference in Geology; Oregon State College. Oregon Department of Geology and Mineral Industries Bulletin 50. 148 pp.Google Scholar
Williams, H. & McBirney, A. R. 1979. Volcanology. San Francisco: Freeman.Google Scholar
Williamson, I. T. 1979. The Petrology and Structure of the Tertiary Volcanic Rocks of West-Central Skye, NW Scotland. Unpublished PhD Thesis, University of Durham, UK.Google Scholar
Williamson, I. T. & Bell, B. R. 1994. The Palaeocene lava field of west-central Skye, Scotland: Stratigraphy, palaeogeography and structure. Transactions of the Royal Society of Edinburgh: Earth Sciences 85, 3975.Google Scholar
Williamson, I. T. & Bell, B. R. 2012. The Staffa Lava Formation: Graben-related volcanism, associated sedimentation and landscape character during the early development of the Palaeogene Mull Lava Field, NW Scotland. Scottish Journal of Geology 48, 146.Google Scholar
Wilson, L., Pinkerton, H. & Macdonald, R. 1987. Physical Processes in Volcanic Eruptions. Annual Review of Earth and Planetary Sciences 15, 7395.Google Scholar
Wilson, L. & Parfitt, E. A. 1993. The formation of perched lava ponds on basaltic volcanoes: the influence of flow geometry on cooling-limited lava flow lengths. Journal of Volcanology and Geothermal Research 56, 113–23.Google Scholar
Worster, M. G., Huppert, H. E. & Sparks, R. S. 1993. The Crystallization of Lava Lakes. Journal of Geophysical Research 98(B), 15,891–901.Google Scholar
Wright, T. L. & Okamura, R. T. 1977. Cooling and Crystallization of Tholeiitic Basalt, 1965 Makaopuhi Lava Lake, Hawaii. United States Geological Survey Professional Paper 1004. 78 pp.Google Scholar
Wright, T. L. & Peck, D. L. 1978. Crystallization and Differentiation of the Alae Magma, Alae Lava Lake, Hawaii. United States Geological Survey Professional Paper 935-C. 20 pp.Google Scholar
Zimbleman, J. R. 1998. Emplacement of long lava flows on planetary surfaces. Journal of Geophysical Research 103(B), 27,503–16.Google Scholar