Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T18:26:20.515Z Has data issue: false hasContentIssue false

Paralonchothrix gen. nov., the first record of Echimyini (Rodentia, Octodontoidea) in the late Miocene of Southern South America

Published online by Cambridge University Press:  21 July 2021

Pedro PIÑERO*
Affiliation:
CONICET, Sección Mastozoología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
A. Itatí OLIVARES
Affiliation:
CONICET, Sección Mastozoología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
Diego H. VERZI
Affiliation:
CONICET, Sección Mastozoología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
Victor H. CONTRERAS
Affiliation:
Gabinete de Estratigrafía, Instituto de Geología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Ignacio de la Roza y Meglioli S/N°, 5400 Rivadavia, San Juan, Argentina.
*
*Corresponding author. Email: ppinero@fcnym.unlp.edu.ar

Abstract

Echimyidae is the most widely diversified family among hystricognath rodents, both in the number of species and variety of lifestyles. In the Patagonian Subregion of southern South America, extinct echimyids related to living arboreal species (Echimyini) are recorded up to the middle Miocene, whereas all the known southern fossils since the late Miocene are linked to terrestrial and fossorial lineages currently inhabiting the Chacoan open biome in eastern South America. In this work, we describe a new genus of echimyid rodent, Paralonchothrix gen. nov., from the late Miocene of northwestern Argentina and western Brazil. Its single recognised species, Paralonchothrix ponderosus comb. nov., is represented by two hemimandibles. One of them comes from a level of Loma de Las Tapias Formation, underlying a tuff dated at 7.0 ± 0.9 Ma (Huayquerian age, late Miocene); the other specimen comes from the ‘Araucanense’ of Valle de Santa María (type locality, Huayquerian age, late Miocene). A phylogenetic analysis linked Paralonchothrix to Lonchothrix, both being the sister group to Mesomys. Thereby, for the first time, an echimyid linked to living Amazonian arboreal clades is recognised for the late Miocene of southern South America. Paralonchothrix gen. nov. thus represents an exceptional record that raises the need to review the postulated evolutionary pattern for echimyids recorded at high latitudes since the late Miocene. The new genus provides a minimum age (ca.7 Ma) in the fossil record for the divergence between Mesomys and Lonchothrix. The palaeoenvironmental conditions inferred for the late Miocene in western and northwestern Argentina suggest savanna-type environments, with areas with more closed woodlands in peri-Andean valleys. The record of Paralonchothrix gen. nov. supports the hypothesis that this area would have maintained connections with tropical biomes of northern South America during the late Miocene.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Álvarez, A., Arévalo, R. L. M. & Verzi, D. H. 2017. Diversification patterns and size evolution in caviomorph rodents. Biological Journal of the Linnean Society 121, 907–22.CrossRefGoogle Scholar
Amidon, W. H., Fisher, G. B., Burbank, D. W., Ciccioli, P. L., Alonso, R. N., Gorin, A. L., Silverharta, P. H., Kylander-Clark, A. R. C. & Christoffersen, M. S. 2017. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proceedings of the National Academy of Sciences 114, 6474–79.CrossRefGoogle ScholarPubMed
Anzótegui, L. M., Mautino, L. R., Horn, M. Y., Garralla, S. S. & Robledo, J. M. 2019. Paleovegetación del Mioceno tardío del noroeste de Argentina. In Nasif, N., Esteban, G., Chiesa, J., Zurita, A. & Georgieff, S. (eds) Mioceno al Pleistoceno del centro y norte de Argentina, Opera Lilloana, Volume 52, 109–30. Tucumán, Argentina: Fundación Miguel Lillo.Google Scholar
Arakaki, M., Christin, P. A., Nyffeler, R., Lendel, A., Eggli, U., Ogburn, R. M., Spriggs, E., Moore, M. J. & Edwards, E. J. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences 108, 8379–84.CrossRefGoogle ScholarPubMed
Bercowski, F., de Berenstein, L. R., Johnson, N. M. & Naeser, C. W. 1986. Sedimentología, magnetoestratigrafía y edad isotópica del Terciario de Loma de Las Tapias, Ullúm, provincia de San Juan. Actas I Reunión Argentina de Sedimentología (La Plata) 1, 169–72.Google Scholar
Bertelli, S. & Giannini, N. P. 2005. A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics 21, 209–39.CrossRefGoogle Scholar
Bond, M. 1977. Revisión de los Echimyidae (Rodentia, Caviomorpha) de la Edad Huayqueriense (Plioceno medio) de las Provincias de Catamarca y Mendoza. Ameghiniana 14, 312.Google Scholar
Bossi, G. E. & Muruaga, C. M. 2009. Estratigrafía e inversión tectónica del ‘rift’ neógeno del Campo del Arenal, Catamarca, NO Argentina. Andean Geology 36, 311–41.Google Scholar
Bowdich, T. E. 1821. An analysis of the natural classifications of Mammalia for the use of students and travelers. Paris, France: J. Smith, 115 pp.Google Scholar
Brandt, J. F. 1855. Beiträge zur nähern Kenntniss der Säugethiere Russland's. Mémoires de l'Académie Impériale des Sciences de Saint-Pétersburg, Physique, Mathématique, et Naturalistique, Series 6, 1365.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics 10, 295304.CrossRefGoogle Scholar
Campbell, K. E. Jr, Frailey, C. D. & Romero-Pittman, L. 2006. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 166219.CrossRefGoogle Scholar
Candela, A. M., Cenizo, M., Tassara, D., Rasia, L. L., Robinet, C., Muñoz, N. A., Cañón Valenzuela, C. & Pardiñas, U. F. J. 2020. A new echimyid genus (Rodentia, Caviomorpha) in central Argentina: uncovered diversity of a Brazilian group of mammals in the Pleistocene. Journal of Paleontology 94, 165–79.CrossRefGoogle Scholar
Carlini, A. A. & Scillato-Yané, G. J. 1996. Chorobates recens (Xenarthra, Dasypodidae) y un análisis de la filogenia de los Euphractini. Revista del Museo de La Plata 9, 225–38.Google Scholar
Carrapa, B., Clementz, M. & Fengc, R. 2019. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling. Proceedings of the National Academy of Sciences 116, 9747–52.CrossRefGoogle ScholarPubMed
Cartelle, C. 1999. Pleistocene mammals of the Cerrado and Caatinga of Brazil. In Eisenberg, J. F. & Redford, K. H. (eds) Mammals of the neotropics. The central neotropics: Ecuador, Peru, Bolivia, Brazil, 2746. Chicago & London: University of Chicago Press.Google Scholar
Carvalho, G. A. S. & Salles, L. O. 2004. Relationships among extant and fossil echimyids (Rodentia: Hystricognathi). Zoological Journal of the Linnean Society 142, 445–77.CrossRefGoogle Scholar
Cerdeño, E. & Bond, M. 1998. Taxonomic revision and phylogeny of Paedotherium and Tremacillus (Packyrukhinae, Hegetotheriidae, Notoungulata) from the late Miocene to the Pleistocene of Argentina. Journal of Vertebrate Paleontology 18, 799811.CrossRefGoogle Scholar
Coddington, J. A. & Scharff, N. 1994. Problems with zero-length branches. Cladistics 10, 415–23.CrossRefGoogle Scholar
Contreras, V. H., Tomassini, R. L., Perez, M. A. & Oliva, C. 2013. Macrochorobates scalabrinii (Moreno & Mercerat) (Cingulata, Dasypodidae) en el Mioceno tardío de la provincia de San Juan (Argentina). Implicancias biocronoestratigráficas y paleobiogeográficas. Revista brasileira de paleontologia 16, 309–18.CrossRefGoogle Scholar
Contreras, V. H., Bracco, A. I. & Baraldo, J. A. 2019. Estratigrafía, bioestratigrafía y cronología del Mioceno superior de la provincia de San Juan (Argentina). In Nasif, N., Esteban, G., Chiesa, J., Zurita, A. & Georgieff, S. (eds) Mioceno al Pleistoceno del centro y norte de Argentina, Opera Lilloana, Volume 52, 177206. Tucumán, Argentina: Fundación Miguel Lillo.Google Scholar
Contreras, V. H. & Baraldo, J. A. 2011. Calibration of the Chasicoan–Huayquerian stage boundary (Neogene), San Juan, western Argentina. In Salfity, J. A. & Marquillas, R. A. (eds) Cenozoic geology of the central Andes of Argentina, 111–21. Salta, Argentina: Instituto del Cenozoico, Universidad Nacional de Salta.Google Scholar
Courcelle, M., Tilak, M. K., Leite, Y. L., Douzery, E. J. & Fabre, P. H. 2019. Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Molecular Phylogenetics and Evolution 136, 241–53.CrossRefGoogle ScholarPubMed
Cozzuol, M. A. 2006. The Acre vertebrate fauna: age, diversity, and geography. Journal of South American Earth Sciences 21, 185203.CrossRefGoogle Scholar
Denton, G. H. 1999. Cenozoic climate change. In Bromage, T. G. & Schrenk, F. (eds) African biogeography, climate change, and human evolution, 94114. New York: Oxford University Press.Google Scholar
Dias de Oliveira, L., Oliveira da Silva, W., Rodrigues da Costa, M. J., Sampaio, I., Pieczarka, J. C. & Nagamachi, C. Y. 2019. First cytogenetic information for Lonchothrix emiliae and taxonomic implications for the genus taxa Lonchothrix + Mesomys (Rodentia, Echimyidae, Eumysopinae). PLos One 14, e0215239.CrossRefGoogle Scholar
Domingo, L., Tomassini, R. L., Montalvo, C. I., Sanz-Pérez, D. & Alberdi, M. T. 2020. The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Scientific Reports 10, 1608.CrossRefGoogle ScholarPubMed
Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J. & Carlini, A. A. 2015. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science (New York, N.Y.) 347, 258–61.CrossRefGoogle Scholar
Eisenberg, J. F. & Redford, K. H. (eds). 1999. Mammals of the neotropics. The central neotropics: Ecuador, Peru, Bolivia, Brazil. Chicago, Illinois: University of Chicago Press, 609 pp.Google Scholar
Emmons, L. H. 2005. A revision of the genera of arboreal Echimyidae (Rodentia: Echimyidae, Echimyinae), with descriptions of two new genera. In Lacey, E. A. & Myers, P. (eds) Mammalian diversification: from chromosomes to phylogeography (a Celebration of the Career of James L. Patton), 247309. Berkeley: University of California Press.Google Scholar
Emmons, L. H., Leite, Y. L. R. & Patton, J. L. 2015. Family Echimyidae. In Patton, J. L., Pardiñas, U. F. J. & D'Elía, G. (eds) Mammals of South America Vol. 2: rodents, 8771022. Chicago: University of Chicago Press.Google Scholar
Emmons, L. H. & Fabre, P. H. 2018. A review of the Pattonomys/Toromys clade (Rodentia: Echimyidae), with descriptions of a new Toromys species and a new genus. American Museum Novitates 3894, 152.CrossRefGoogle Scholar
Emmons, L. H. & Feer, F. 1999. Neotropical rainforest mammals: a field guide. Chicago, Illinois: University of Chicago Press, 281 pp.Google Scholar
Emmons, L. H. & Vucetich, M. G. 1998. The identity of Winge's Lasiuromys villosus and the description of a new genus of echimyid rodent (Rodentia: Echimyidae). American Museum Novitates 3223, 112.Google Scholar
Ercoli, M. D., Álvarez, A., Verzi, D. H., Villalba Ulberich, J. P., Quiñones, S. I., Constantini, O. E. & Zurita, A. E. 2021. A new mammalian assemblage for Guanaco Formation (northwestern Argentina), and the description of a new genus of New World porcupine. Journal of South American Earth Sciences 110, 103389.CrossRefGoogle Scholar
Ercoli, M. D. & Armella, M. A. 2021. Snout shape and masticatory apparatus of the rodent-like mesotheriid ungulates (Typotheria, Notoungulata): exploring evolutionary trends in dietary strategies through ancestral reconstructions. Palaeontology 64, 385408.CrossRefGoogle Scholar
Esteban, G., Nasif, N. & Georgieff, S. M. 2014. Cronobioestratigrafía del Mioceno tardío-Plioceno temprano, Puerta de Corral Quemado y Villavil, provincia de Catamarca, Argentina. Acta Geológica Lilloana 26, 165–92.Google Scholar
Fabre, P. H., Patton, J. L. & Leite, Y. L. R. 2016. Family echimyidae. In Wilson, D. E., Lacher, T. E. Jr. & Mittermeier, R. A. (eds) Handbook of the mammals of the world Vol. 6: lagomorphs and rodents, 552–641. Barcelona: I. Lynx Edicions.Google Scholar
Fabre, P. H., Upham, N. S., Emmons, L. H., Justy, F., Leite, Y. L., Carolina Loss, A., Orlando, L., Tilak, M. K., Patterson, B. D. & Douzery, E. J. 2017. Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Molecular Biology and Evolution 34, 613–33.Google ScholarPubMed
Fabre, P.-H., Vilstrup, J. T., Raghavan, M., Der Sarkissian, C., Willerslev, E., Douzery, E. J. P. & Orlando, L. 2014. Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biology Letters 10, 20140266.CrossRefGoogle ScholarPubMed
Fernández-Monescillo, M., Mamani Quispe, B., Pujos, F. & Antoine, P.-O. 2018. Functional anatomy of the forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and evolutionary insights at the Family level. Journal of Mammalian Evolution 25, 197211.CrossRefGoogle Scholar
Flynn, J. J., Charrier, R., Croft, D. A., Gans, P. B., Herriott, T. M., Wertheim, J. A. & Wyss, A. R. 2008. Chronologic implications of new Miocene mammals from the Cura-Mallín and Trapa Trapa formations, Laguna del Laja area, south central Chile. Journal of South American Earth Sciences 26, 412–23.CrossRefGoogle Scholar
Frailey, C. D. 1986. Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Rio Acre region, western Amazonia. Contributions in Science, Museum of Natural History, Los Angeles County 374, 146.Google Scholar
Frailey, C. D. & Campbell, K. E. Jr. 2004. Paleogene rodents from Amazonian Peru: the Santa Rosa Local Fauna. In Campbell, K. E. Jr (ed) The Paleogene mammalian fauna of Santa Rosa, Amazonian Peru, 71130. Los Angeles: Natural History Museum of Los Angeles County.Google Scholar
Galewski, T., Mauffrey, J. F., Leite, Y. L., Patton, J. L. & Douzery, E. J. 2005. Ecomorphological diversification among South American spiny rats (Rodentia; Echimyidae): a phylogenetic and chronological approach. Molecular Phylogenetics and Evolution 34, 601–15.CrossRefGoogle ScholarPubMed
Gaudioso, P., Pérez, M., Olivares, A. I. & Diaz, M. 2021. Paramyocastor diligens (Rodentia, Hystricomorpha) from Las Cañas Formation (Pliocene), Santiago del Estero Province, Argentina. Historical Biology 33, 683688.CrossRefGoogle Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. 2008a. TNT: tree analysis using new technology, version 1.1. Available at www.zmuc.dk/public/phylogeny/tnt.Google Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. 2008b. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–86.CrossRefGoogle Scholar
Gray, J. E. 1825. An outline of an attempt at the disposition of the Mammalia into tribes and families, with a list of the genera apparently appertaining to each tribe. Annals of Philosophy, New Series 10, 337–44.Google Scholar
Hadler, P., Verzi, D. H., Vucetich, M. G., Ferigolo, J. & Ribeiro, A. M. 2008. Caviomorphs (Mammalia, Rodentia) from the Holocene of Rio Grande do Sul state, Brazil: systematics and paleoenvironmental context. Revista Brasileira de Paleontologia 11, 97116.CrossRefGoogle Scholar
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hershkovitz, P. 1958. A geographic classification of Neotropical mammals. Fieldiana Zoology 36, 581620.Google Scholar
Hoffstetter, R. 1986. High Andean mammalian faunas during the Plio-Pleistocene. In Vuilleumier, F. & Monasterio, M. (eds) High altitude tropical biogeography, 218–45. Oxford: Oxford University Press.Google Scholar
Hynek, S. A., Passey, B. H., Prado, J. L., Brown, F. H., Cerling, T. E. & Quade, J. 2012. Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina. Earth and Planetary Science Letters 321, 177–88.CrossRefGoogle Scholar
Jablonski, D., Belanger, C. L., Berke, S. K., Huang, S., Krug, A. Z., Roy, K., Tomasovych, A. & Valentine, J. W. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proceedings of the National Academy of Sciences 110, 10487–94.CrossRefGoogle ScholarPubMed
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24, 467500.CrossRefGoogle Scholar
Jansson, R., Rodríguez-Castañeda, G. & Harding, L. E. 2013. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution 67, 1741–55.CrossRefGoogle Scholar
Kerber, L., Negri, F. R., Ribeiro, A. M., Nasif, N., Souza-Filho, J. P. & Ferigolo, J. 2017. Tropical fossil caviomorph rodents from the southwestern Brazilian Amazonia in the context of the South American faunas: systematics, biochronology, and paleobiogeography. Journal of Mammalian Evolution 24, 5770.CrossRefGoogle Scholar
Kraglievich, J. L. 1965. Speciation phylétique dans les rongeurs fossiles du genre Eumysops Amegh. (Echimyidae, Heteropsomyinae). Mammalia 29, 258–67.CrossRefGoogle Scholar
Landry, S. O. Jr. 1957. Factor affecting the procumbency of rodent upper incisors. Journal of Mammalogy 38, 223–34.CrossRefGoogle Scholar
Lara, M. C., Patton, J. L. & Da Silva, M. N. F. 1996. The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete cytochrome b sequences. Molecular Phylogenetics and Evolution 5, 403–13.CrossRefGoogle ScholarPubMed
Latorre, C., Quade, J. & McIntosh, W. C. 1997. The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. Earth and Planetary Science Letters 146, 8396.CrossRefGoogle Scholar
Le Roux, J. P. 2012. A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions. Sedimentary Geology 247, 2138.CrossRefGoogle Scholar
Leite, Y. L. R. & Patton, J. L. 2002. Evolution of South American spiny rats (Rodentia, Echimyidae): the star phylogeny hypothesis revisited. Molecular Phylogenetics and Evolution 25, 455–64.CrossRefGoogle Scholar
Lessa, E. P. 1990. Morphological evolution of subterranean mammals: integrating structural, functional, and ecological perspectives. In Nevo, E. & Reig, O. A. (eds) Evolution of subterranean mammals at the organismal and molecular levels, 211–30. New York: Wiley-Liss.Google Scholar
MacFadden, B. J. 2006. Extinct mammalian biodiversity of the ancient New World tropics. Trends in Ecology & Evolution 21, 157–65.CrossRefGoogle ScholarPubMed
MacFadden, B. J., Cerling, T. E. & Prado, J. 1996. Cenozoic terrestrial ecosystem evolution in Argentina; evidence from carbon isotopes of fossil mammal teeth. Palaios 11, 319–27.CrossRefGoogle Scholar
Marshall, L. G., Hoffstetter, R. & Pascual, R. 1983. Mammals and stratigraphy: geochronology of the continental mammal-bearing Tertiary of South America. Palaeovertebrata, Mémorie Extraordinaire, 193.Google Scholar
Marshall, L. G. & Patterson, B. 1981. Geology and geochronology of the mammal-bearing Tertiary of the Valle de Santa María and Río Corral Quemado, Catamarca Province, Argentina. Fieldiana Geology 9, 180.Google Scholar
Morrone, J. J. 2014. Cladistic biogeography of the Neotropical Region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30, 202–14.CrossRefGoogle Scholar
Nasif, N. L. 1998. Nuevo material de Eumysopinae (Echimyidae, Rodentia) de la Formación Andalhuala (Terciario Superior), Valle de Santa María, provincia de Catamarca, Argentina. Ameghiniana 35, 36.Google Scholar
Olivares, A. I. 2009. Anatomía, sistemática y evolución de los roedores caviomorfos sudamericanos del género Eumysops (Rodentia, Echimyidae). Unpublished PhD Thesis, Universidad Nacional de La Plata, Buenos Aires, Argentina, 246 pp.Google Scholar
Olivares, A. I., Verzi, D. H. & Vucetich, M. G. 2012a. Definición del género Eumysops Ameghino, 1888 (Rodentia, Echimyidae) y revisión de las especies del Plioceno temprano de Argentina central. Ameghiniana 49, 198216.CrossRefGoogle Scholar
Olivares, A. I., Verzi, D. H., Vucetich, M. G. & Montalvo, C. I. 2012b. Phylogenetic affinities of the late Miocene Echimyidae Pampamys and the age of Thrichomys (Rodentia, Hystricognathi). Journal of Mammalogy 93, 7686.CrossRefGoogle Scholar
Olivares, A. I., Verzi, D. H., Contreras, V. H. & Pessôa, L. 2017. A new Echimyidae (Rodentia, Hystricomorpha) from the late Miocene of southern South America. Journal of Vertebrate Paleontology 37, e1239204.CrossRefGoogle Scholar
Olivares, A. I., Álvarez, A., Verzi, D. H., Pérez, S. I. & De Santi, N. A. 2020. Unravelling the distinctive craniomandibular morphology of the Plio-Pleistocene Eumysops in the evolutionary setting of South American octodontoid rodents (Hystricomorpha). Palaeontology 63, 443–58.CrossRefGoogle Scholar
Olivares, A. I. & Verzi, D. H. 2015. Systematics, phylogeny and evolutionary pattern of the hystricognath rodent Eumysops (Echimyidae) from the Plio–Pleistocene of southern South America. Historical Biology 7, 1042–61.CrossRefGoogle Scholar
Orlando, L., Mauffrey, J. F., Cuisin, J., Patton, J. L., Hänni, C. & Catzeflis, F. 2003. Napoleon Bonaparte and the fate of an Amazonian rat: new data on the taxonomy of Mesomys hispidus (Rodentia: Echimyidae). Molecular Phylogenetics and Evolution 27, 113–20.CrossRefGoogle Scholar
Palazzesi, L. & Barreda, V. 2007. Major vegetation trends in the Tertiary of Patagonia (Argentina): a qualitative paleoclimatic approach based on palynological evidence. Flora 202, 328–37.CrossRefGoogle Scholar
Palazzesi, L. & Barreda, V. 2012. Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nature Communications 3, 1294.CrossRefGoogle ScholarPubMed
Pascual, R. 1967. Los roedores Octodontoidea (Caviomorpha) de la Formación Arroyo Chasicó (Plioceno inferior) de la Provincia de Buenos Aires. Revista del Museo de La Plata (Paleontología) 5, 259–82.Google Scholar
Pascual, R. & Odreman Rivas, O. E. 1971. Evolución de las comunidades de los vertebrados del Terciario argentino. Los aspectos paleozoogeográficos y paleoclimáticos relacionados. Ameghiniana 8, 372412.Google Scholar
Pascual, R. & Ortiz Jaureguizar, E. 1990. Evolving climates and mammal faunas in Cenozoic South America. Journal of Human Evolution 19, 2360.CrossRefGoogle Scholar
Patterson, B. & Pascual, R. 1968. New echimyid rodents from the Oligocene of Patagonia, and a synopsis of the family. Breviora 301, 114.Google Scholar
Patton, J. L. 2015a. Subfamily myocastorinae. In Patton, J. L., Pardiñas, U. F. J. & D'Elía, G. (eds) Mammals of South America Vol. 2: rodents, 1019–22. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Patton, J. L. 2015b. Genus Lonchothrix Thomas, 1920. In Patton, J. L., Pardiñas, U. F. J. & D'Elía, G. (eds) Mammals of South America Vol. 2: rodents, 942–43. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Patton, J. L., da Silva, M. N. F. & Malcolm, J. R. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History 244, 1306.2.0.CO;2>CrossRefGoogle Scholar
Patton, J. L., Pardiñas, U. F. J. & D'Elía, G. (eds). 2015. Mammals of South America Vol. 2: rodents. Chicago: University of Chicago Press, xxvi + 1336 pp.CrossRefGoogle Scholar
Patton, J. L. & Emmons, L. H. 2015. Genus Mesomys Wagner, 1845. In Patton, J. L., Pardiñas, U. F. J. & D'Elía, G. (eds) Mammals of South America Vol. 2: rodents, 943–50. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Rasia, L. L. 2016. Los Chinchillidae (Rodentia, Caviomorpha) fósiles de la República Argentina: sistemática, historia evolutiva y biogeográfica, significado bioestratigráfico y paleoambiental. Unpublished PhD Thesis, Universidad Nacional de La Plata, Buenos Aires, Argentina, 381 pp.Google Scholar
Rasia, L. L. & Candela, A. M. 2017. Lagostomus telenkechanum, sp. nov., a new lagostomine rodent (Caviomorpha, Chinchillidae) from the Arroyo Chasicó Formation (late Miocene; Buenos Aires province, Argentina). Journal of Vertebrate Paleontology 37, e1239205.CrossRefGoogle Scholar
Reguero, M. A., Dozo, M. T. & Cerdeño, E. 2007. A poorly known rodentlike mammal (Pachyrukhinae, Hegetotheriidae, Notoungulata) from the Deseadan (late Oligocene) of Argentina. Paleoecology, biogeography, and radiation of the rodentlike ungulates in South America. Journal of Paleontology 81, 1301–07.CrossRefGoogle Scholar
Reguero, M. A. & Candela, A. M. 2011. Late Cenozoic mammals from the Northwest of Argentina: biochronological and biogeographical problems and perspective. In Salfity, J. A. & Marquillas, R. A. (eds) Cenozoic geology of the central Andes of Argentina, 411–26. Salta, Argentina: Instituto del Cenozoico, Universidad Nacional de Salta.Google Scholar
Reig, O. A. 1986. Diversity patterns and differentiation of high Andean rodents. In Vuilleumier, F. & Monasterio, M. (eds) High altitude tropical biogeography, 404–39. Oxford: Oxford University Press.Google Scholar
Reig, O. A. 1989. Karyotypic repatterning as one triggering factor in cases of explosive speciation. In Fontdevila, A. (ed) Evolutionary biology of transient unstable populations, 246–89. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Rodríguez, D. J. 2004. Estudio sedimentológico y estratigráfico del Neógeno superior de Loma de Las Tapias, con el fin de interpretar la evolución del antiguo río San Juan. Unpublished MS Thesis, Universidad Nacional de San Juan, San Juan, Argentina, 108 pp.Google Scholar
Rovereto, C. 1914. Los estratos araucanos y sus fósiles. Anales del Museo Nacional de Historia Natural de Buenos Aires 25, 1247.Google Scholar
Rusconi, C. 1936. Nuevo género de roedores del Puelchense de Villa Ballester. Boletín Paleontológico de Buenos Aires 7, 14.Google Scholar
Sant'Anna-Filho, M. J. 1994. Roedores Do Neógeno Do Alto Juruá, Estado Do Acre, Brasil. Unpublished MS Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 167 pp.Google Scholar
Serafini, R. L., Bustos, N. E. & Contreras, V. H. 1986. Geología de la Formación Loma de Las Tapias (nov. nom.), quebrada de Ullum, provincia de San Juan. Jornadas Geológicas de Precordillera, 1st.: Buenos Aires, Asociación Geológica Argentina, Serie A, Monografías y Reuniones 2, 7782.Google Scholar
Solórzano, A., Encinas, A., Kramarz, A., Carrasco, G., Montoya-Sanhueza, G. & Bobe, R. 2020. Late early Miocene caviomorph rodents from Laguna del Laja (~37° S), Cura-Mallín Formation, south-central Chile. Journal of South American Earth Sciences 102, 102658.CrossRefGoogle Scholar
Sostillo, R., Montalvo, C. I. & Verzi, D. H. 2015. A new species of Reigechimys (Rodentia, Echimyidae) from the late Miocene of central Argentina and the evolutionary pattern of the lineage. Ameghiniana 51, 284–94.CrossRefGoogle Scholar
Stein, B. R. 2000. Morphology of subterranean rodents. In Lacey, A. E., Patton, J. L. & Cameron, G. N. (eds) Life underground. The biology of subterranean rodents, 1961. Chicago: University of Chicago Press.Google Scholar
Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E., Sobel, E. R. & Trauth, M. H. 2007. Tectonics and climate of the southern central Andes. Annual Review of Earth and Planetary Sciences 35, 747–87.CrossRefGoogle Scholar
Tomassini, R. L., Garrone, M. C. & Montalvo, C. I. 2017. New light on the endemic South American pachyrukhine Paedotherium Burmeister, 1888 (Notoungulata, Hegetotheriidae): Taphonomic and paleohistological analysis. Journal of South American Earth Sciences 73, 3341.CrossRefGoogle Scholar
Tripati, A. K., Roberts, C. D. & Eagle, R. A. 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science (New York, N.Y.) 326, 1394–97.CrossRefGoogle ScholarPubMed
Upham, N. S., Ojala-Barbour, R., Brito, J., Velazco, P. M. & Patterson, B. D. 2013. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evolutionary Biology 13, 191.CrossRefGoogle ScholarPubMed
Upham, N. S. & Patterson, B. D. 2012. Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Molecular Phylogenetics and Evolution 63, 417–29.CrossRefGoogle Scholar
Upham, N. S. & Patterson, B. D. 2015. Evolution of caviomorph rodents: a complete phylogeny and timetree for living genera. In Vassallo, A. I. & Antenucci, D. (eds) Biology of caviomorph rodents: diversity and evolution, 63120. Buenos Aires: Sociedad Argentina para el estudio de los Mamíferos (SAREM).Google Scholar
Verzi, D. H. 2002. Patrones de evolución morfológica en Ctenomyinae (Rodentia, Octodontidae). Mastozoología Neotropical 9, 309–28.Google Scholar
Verzi, D. H., Vucetich, M. G. & Montalvo, C. I. 1994. Octodontid-like Echimyidae (Rodentia): an upper Miocene episode in the radiation of the family. Palaeovertebrata 23, 199210.Google Scholar
Verzi, D. H., Vucetich, M. G. & Montalvo, C. I. 1995. Un nuevo Eumysopinae (Rodentia, Echimyidae) de Mioceno tardío de la Provincia de La Pampa y consideraciones sobre la historia de la subfamilia. Ameghiniana 32, 191–95.Google Scholar
Verzi, D. H., Montalvo, C. I. & Vucetich, M. G. 1999. Afinidades y significado evolutivo de Neophanomys biplicatus (Rodentia, Octodontidae) del Mioceno tardío–Plioceno temprano de Argentina. Ameghiniana 36, 8390.Google Scholar
Verzi, D. H., Deschamps, C. M. & Vucetich, M. G. 2002. Sistemática y antigüedad de Paramyocastor diligens (Ameghino, 1888) (Rodentia, Caviomorpha, Myocastoridae). Ameghiniana 39, 193200.Google Scholar
Verzi, D. H., Deschamps, C. M. & Tonni, E. P. 2004. Biostratigraphic and palaeoclimatic meaning of the middle Pleistocene South American rodent Ctenomys kraglievichi (caviomorpha, Octodontidae). Palaeogeography, Palaeoclimatology, Palaeoecology 212, 315–29.CrossRefGoogle Scholar
Verzi, D. H., Olivares, A. I. & Morgan, C. C. 2014. Phylogeny and evolutionary patterns of South American octodontoid rodents. Acta Palaeontologica Polonica 59, 757–69.Google Scholar
Verzi, D. H., Morgan, C. C. & Olivares, A. I. 2015. The history of South American octodontoid rodents and its contribution to evolutionary generalisations. In Cox, P. & Hautier, L. (eds) Evolution of the rodents. Advances in phylogeny, functional morphology, and development. Cambridge studies in morphology and molecules: new paradigms in evolutionary biology, 139–63. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Verzi, D. H., Olivares, A. I., Morgan, C. C. & Álvarez, A. 2016. Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae. Journal of Mammalian Evolution 23, 93115.CrossRefGoogle Scholar
Verzi, D. H., Olivares, A. I., Hadler, P., Castro, J. C. & Tonni, E. P. 2018. Occurrence of Dicolpomys (Echimyidae) in the late Holocene of Argentina: The most recently extinct South American caviomorph genus. Quaternary International 490, 123–31.CrossRefGoogle Scholar
Verzi, D. H., Olivares, A. I. & Morgan, C. C. 2019. Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea. Historical Biology 31, 1170–78.Google Scholar
Verzi, D. H. & Olivares, A. I. 2006. Craniomandibular joint in South American burrowing rodents (Ctenomyidae): adaptations and constraints related to a specialized mandibular position in digging. Journal of Zoology 270, 488501.CrossRefGoogle Scholar
Vizcaíno, S. F., De Iuliis, G. & Bargo, M. S. 1998. Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheriidae): when anatomy constrains destiny. Journal of Mammalian Evolution 5, 291322.CrossRefGoogle Scholar
Vizcaíno, S. F., Cassini, G. H., Fernicola, J. C. & Bargo, M. S. 2011. Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra). Ameghiniana 48, 305–19.CrossRefGoogle Scholar
Voss, R. S., Lunde, D. P. & Simmons, N. B. 2001. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Part 2: nonvolant species. Bulletin of the American Museum of Natural History 263, 1236.2.0.CO;2>CrossRefGoogle Scholar
Vucetich, M. G. 1986. Historia de los roedores y primates en Argentina: su aporte al conocimiento de los cambios ambientales durante el Cenozoico. Actas IV Congreso Argentino de Paleontología y Bioestratigrafía 2, 157–65.Google Scholar
Vucetich, M. G. 1995. Theridomysops parvulus (Rovereto, 1914), un primitivo Eumysopinae (Rodentia, Echimidae) del Mioceno tardío de Argentina. Mastozoología Neotropical 2, 167–72.Google Scholar
Vucetich, M. G., Mazzoni, M. M. & Pardiñas, U. F. J. 1993. Los roedores de la Formación Collón Cura (Mioceno medio), y la Ignimbrita Pilcaniyeu. Cañadón del Tordillo, Neuquén. Ameghiniana 30, 361–81.Google Scholar
Vucetich, M. G., Verzi, D. H. & Tonni, E. P. 1997. Paleoclimatic implications of the presence of Clyomys (Rodentia, Echimyidae) in the Pleistocene of central Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 128, 207–14.CrossRefGoogle Scholar
Vucetich, M. G., Arnal, M., Deschamps, C. M., Pérez, M. E. & Vieytes, E. C. 2015. A brief history of caviomorph rodents as told by the fossil record. In Vassallo, A. I. & Antenucci, D. (eds) Biology of caviomorph rodents: diversity and evolution, 1162. Buenos Aires: Sociedad Argentina para el estudio de los Mamíferos (SAREM).Google Scholar
Waterhouse, G. R. 1839. Mammalia. In Darwin, C. (ed.) The zoology of the voyage of the H.M.S. Beagle under the command of captain fitz Roy, R. N., during the years 1832–1836 fascicle 10, vii–ix, 4997. London: Smith, Elder and Co.Google Scholar
Wetzel, R. M., Gardner, A. L., Redford, K. H. & Eisenberg, J. F. 2007. Tribu Euphractini Winge, 1923. In Gardner, A. L. (ed) Mammals of South America Vol. 1: marsupials, Xenarthrans, shrews, and bats, 141–48. Chicago: University of Chicago Press.Google Scholar
Wilson, D. E., Lacher, T. E. Jr. & Mittermeier, R.A. (eds). 2016. Handbook of the mammals of the world Vol. 6: lagomorphs and rodents I. Barcelona: Lynx Edicions.Google Scholar
Wood, A. E. & Patterson, B. 1959. Rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution. Bulletin of the Museum of Comparative Zoology 120, 279428.Google Scholar
Woods, C. A. 1972. Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents. Bulletin of the American Museum of Natural History 147, 115–98.Google Scholar
Woods, C. A., Contreras, L., Willner-Chapman, G. & Whidden, H. P. 1992. Myocastor coypus. Mammalian Species 398, 18.CrossRefGoogle Scholar
Woods, C. A. & Howland, E. B. 1979. Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. Journal of Mammalogy 60, 95116.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science (New York, N.Y.) 292, 686–93.CrossRefGoogle ScholarPubMed
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–83.CrossRefGoogle ScholarPubMed
Zuri, I. & Terkel, J. 2001. Reversed palatal perforation by upper incisors in ageing blind mole-rats (Spalax ehrenbergi). Journal of Anatomy 199, 591–98.CrossRefGoogle Scholar
Supplementary material: File

Piñero et al. supplementary material

Piñero et al. supplementary material

Download Piñero et al. supplementary material(File)
File 1.4 MB