Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T03:18:22.890Z Has data issue: false hasContentIssue false

Cytological observations on Bact. coli, Proteus vulgaris and various aerobic spore-forming bacteria with special reference to the nuclear structures

Published online by Cambridge University Press:  15 May 2009

C. F. Robinow*
Affiliation:
Strangeways Research Laboratory, Cambridge
*
*Of Cancer Department, St Bartholomew' Hospital.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The basic observations of Piekarski (1937–40) and F. Neumann (1941) on Feulgen-positive, chromatinic structures, going through a regular cycle of division, in the cells of Bact. coli and Proteus vulgaris are confirmed and the view that these structures are nuclear in nature is accepted.

2. The chromatinic structures in bacteria from old cultures, although usually distinguishable from the cytoplasm, are too small to be resolved accurately. After transfer to a fresh nutrient medium the chromatinic structures increase in size and give rise to short, often dumbbell shaped, rods (chromosomes) which multiply by splitting lengthwise in a plane more or less parallel with the short axes of the bacterium.

3. The chromatinic structures of Bacl. coli and of Proteus vulgaris are essentially the same as those previously described in myxobacteria and actinomycetes (Badian, 1930, 1933, 1936) and in various well-known aerobic spore-forming bacteria (Badian, 1933, 1935; Robinow, 1942).

4. A single cell of Bact. coli or Proteus vulgaris contains one chromatinic body or one or two pairs of these, representing primary and secondary division products.

5. Few bacteria from young cultures are single cells. When fixed through the agar with Bouin's mixture and stained briefly with Giemsa's solution, bacteria from young growing cultures of Bact. coli, Proteus vulgaris, B. mesentericus and B. megatherium assume a banded appearance indicating that each bacterium consists of two, three or four separate cells.

6. A plasmolysing treatment has been applied to B. megatherium which provides direct proof of the composite structure of this bacillus by inducing its component protoplasts to shrink away independently from the outer supporting cell wall.

I wish sincerely to thank Dr H. B. Fell for the hospitality offered to me at the Strangeways Laboratory, for her sustained interest in this investigation and for her help in preparing the manuscript for the press. I have also pleasure in admitting my indebtedness to Prof. E. G. Pringsheim for much helpful criticism and advice in matters relating to the bacterial cell wall.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1944

References

REFERENCES

Badian, J. (1930). Acta Soc. Bot. Polon. 7, 55.CrossRefGoogle Scholar
Badian, J. (1933). Acta Soc. Bot. Polon. 10, 361.CrossRefGoogle Scholar
Badian, J. (1935). Acta Soc. Bot. Polon. 12, 69.CrossRefGoogle Scholar
Badian, J. (1936). Acta Soc. Bot. Polon. 13, 105.CrossRefGoogle Scholar
Badian, J. (1933). Arch. Mikrobiol. 4, 409.CrossRefGoogle Scholar
Badian, J. (1937). Bull. int. Acad. Cracovie, B, 61.Google Scholar
Balint, A. (1926). Klin. Wschr. 5, 147.CrossRefGoogle Scholar
de Bary, A. (1884). Vergleichende Morphologie und Biologie der Pilze, etc. Leipzig. English edition, Oxford, 1887.Google Scholar
Beebeb, J. M. (1941). J. Bact. 42, 193.CrossRefGoogle Scholar
Dobell, C. (1912). Arch. Protistenk. 26, 117.Google Scholar
Fischer, A. (1895). Jb. wiss. Bot. 27, 1.Google Scholar
Giemsa, G. (1912). Handbuch der pathogenen Protozoen, 1. Leipzig.Google Scholar
Guilliermond, A. (1908). Arch. Protistenk. 12, 1.Google Scholar
Gross, F. (1911). Mitt. Zool. Stat. Neapel, 2a, 188.Google Scholar
Klieneberger, E. (1934). J. Path. Bakt. 39, 409.CrossRefGoogle Scholar
Klieneberger, E. (1942). J. Hyg., Camb., 42, 110.CrossRefGoogle Scholar
Knaysi, G. (1930). J. Bact. 19, 113.CrossRefGoogle Scholar
Knaysi, G. (1938). Bot. Rev. 4. 83112.CrossRefGoogle Scholar
Knaysi, G. & Mudd, S. (1943). J. Bact. 45, 349.CrossRefGoogle Scholar
Knaysi, G. (1942). J. Bact. 42, 365.CrossRefGoogle Scholar
Lea, D. E. (1940). Nature, Lond., 146, 137.CrossRefGoogle Scholar
Lea, D. E., Haines, R. B. & Bretscher, E. (1941). J. Hyg., Camb., 41, 1.CrossRefGoogle Scholar
Lea, D. E., Haines, R. B. & Coulson, C. A. (1937). Proc. Roy. Soc. B, 123, 1.Google Scholar
Migula, W. (1897). System d. Bakterien, 1. Jena.Google Scholar
Nakanishi, K. (1901). Zbl. Bakt. Abt, I, 30, 97.Google Scholar
Neumann, F. (1941). Zbl. Bakt. Abt. ii, Orig. 103, 385.Google Scholar
Piekarski, G. (1937). Arch. Mikrobiol. 8, 428.CrossRefGoogle Scholar
Piekarski, G. (1938). Zbl. Bakt. Abt. I, Orig. 142, 69.Google Scholar
Piekarski, G. (1939). Zbl. Bakt. Abt. I, Orig. 144, 140.Google Scholar
Piekarski, G. (1940). Arch. Mikrobiol. 11, 460.CrossRefGoogle Scholar
Robinow, C. (1942). Proc. Roy. Soc. B, 130, 299.Google Scholar
Ruhland, W. & Hoffmann, C. (1925). Arch. wiss. Bot. 1, 1.Google Scholar
Russ-Muenzer, A. (1935). Zbl. Bakt.Google Scholar
Stille, B. (1937). Arch. Mikrobiol. 8, 125.CrossRefGoogle Scholar