Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-15T19:15:21.919Z Has data issue: false hasContentIssue false

Phage conversion in Salmonella enterica serotype Enteritidis: implications for epidemiology

Published online by Cambridge University Press:  15 May 2009

S. Rankin
Affiliation:
Scottish Salmonella Reference Laboratory, Stobhill NHS Trust, 133 Balornock Road, Glasgow G21 3UW
D. J. Platt*
Affiliation:
University Department of Bacteriology, Glasgow Royal Infirmary, Castle Street, Glasgow G4 0SF
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A model system for the study of phage conversion of Salmonella enterica serotype Enteritidis is reported. Temperate phages 1,2,3 and 6 from the phage typing scheme were used to convert several individually recognized phage types into others. Phage type 4 was converted to PT8, PT6a to PT4, PT6a to PT7, PT13 to PT13a and PT15 to PT11; some new phage lysis patterns were also detected.

This model was used to examine the relationships between phage types within a previously denned clonal lineage, SECLIII, to establish whether or not Enteritidis like Salmonella enterica serotype Typhi and Salmonella enterica serotype Paratyphi B possessed type determining phages. We were able to convert PT1 to PT20, and PT15 to PT11.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

REFERENCES

1.Craigie, J. The present status of phage typing of Bact typhosum. Canad J Publ Hlth 1942; 33: 41–2.Google Scholar
2.Craigie, J. The significance and applications of bacteriophage in bacteriology and virus research. Bact Rev 1946; 10: 7388.CrossRefGoogle Scholar
3.Anderson, ES. The significance of Vi-phage types F1 and F2 of Salmonella typhi. J Hyg 1951; 49: 458–71.Google ScholarPubMed
4.Felix, A, Anderson, ES. Bacteriophages carried by the Vi-phage types of Salmonella typhi. Nature 1951; 167: 603.CrossRefGoogle ScholarPubMed
5.Boyd, JSK, Parker, MT, Mauer, NS. Symbiotic bacteriophage as a ‘marker’ in the identification of strains of Salmonella typhimurium. J Hyg 1951; 49: 442–51.Google ScholarPubMed
6.Rodrigue, DC, Tauxe, RV, Rowe, BK. International increase in Salmonella enteritidis, a new pandemic? Epidemiol Infect 1990; 105: 21–7.CrossRefGoogle ScholarPubMed
7.Rodrigue, DC, Cameron, DN, Puhr, ND et al. , Comparison of plasmid profiles, phage types. and antimicrobial resistance patterns of Salmonella enteritidis isolates in the United States. J Clin Microbiol 1992; 30: 854–7.CrossRefGoogle ScholarPubMed
8.Khakhria, R, Duck, D, Lior, H. Distribution of Salmonella enteritidis phage types in Canada. Epidemiol Infect 1991; 106: 2532.CrossRefGoogle ScholarPubMed
9.Ward, LR, de Sa, JDH, Rowe, B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect 1987; 99: 291–4.CrossRefGoogle ScholarPubMed
10.Threlfall, EJ, Rowe, BK, Ward, LR. Subdivision of Salmonella enteritidis by plasmid profile typing. Epidemiol Infect 1989; 102: 459–65.CrossRefGoogle ScholarPubMed
11.Stanley, J, Jones, CS, Threlfall, EJ. Evolutionary lines among Salmonella enteritidis phage types are identified by insertion sequence IS200 distribution. FEMS Microbiol Lett 1991, 82: 8390.CrossRefGoogle Scholar
12.Rankin, SC, Benson, CE, Platt, DJ. The distribution of serotype-specific plasmids among different subgroups of strains of Salmonella enterica serotype Enteritidis: characterization of molecular variants by restriction enzyme fragmentation patterns. Epidemiol Infect 1995; 114: 2540.CrossRefGoogle ScholarPubMed
13.Anderson, ES, Williams, REO. Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J Clin Path 1956; 9: 94127.CrossRefGoogle ScholarPubMed
14.Platt, DJ, Sommerville, JS. A simple method for the detection of resistance plasmids in Serratia species by transfer to members of the genus Enterobacter. J Antimicrob Chemother 1981; 8: 145–52.CrossRefGoogle ScholarPubMed
15.Platt, DJ, Chesham, JS, Brown, DJ, Kraft, CA, Taggart, J. Restriction enzyme fingerprinting of enterobacterial plasmids: a simple strategy with wide application. J Hyg 1986: 97: 205–10.CrossRefGoogle ScholarPubMed
16.Birnboim, HC, Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 1979; 7: 1513–23.CrossRefGoogle ScholarPubMed
17.Stanley, J, Goldsworthy, M, Threfall, EJ. Molecular phylogenetic typing of pandemic isolates of Salmonella enteritidis. FEMS Microbiol Lett 1992; 90: 153–60.CrossRefGoogle Scholar
18.Altekruse, S, Koehler, J, Hickman-Brenner, F, Tauxe, RV, Ferris, K. A comparison of Salmonella enteritidis phage types from egg-associated outbreaks and implicated laying flocks. Epidemiol Infect 1993; 110: 1722.CrossRefGoogle ScholarPubMed
19.Platt, DJ, Cullen, JM, Sharp, JCM. Salmonella enteritidis infections and molecular epidemiology. Commun Dis Scot 1988; 22: 68.Google Scholar
20.Brown, DJ, Threlfall, EJ, Hampton, MD, Rowe, B. Molecular characterization of plasmids in Salmonella enteritidis phage types. Epidemiol Infect 1993: 110: 209–16.CrossRefGoogle ScholarPubMed
21.Iseki, S, Kashiwagi, K. Induction of somatic antigen 1 by bacteriophage in salmonella B group. Proc Jpn Acad 1955; 31: 558–64.CrossRefGoogle Scholar
22.Le Minor, L. Conversions antigéniques chez les Salmonella. VII. Acquisition du facteur 14 par les Salmonella sous-groupe Cl (6, 7), après lysogénisation par une phage tempéré isolé de cultures de sous-groupe C1 [6, (7), (14)]. Ann Inst Pasteur 1965; 109: 505–15.Google Scholar
23.Bertani, G, Weigle, JJ. Host controlled variation in bacterial viruses. J Bact 1952; 65: 113–21.CrossRefGoogle Scholar
24.Hickman-Brenner, FW, Stubbs, AD, Farmer, JJ.Phage typing of Salmonella enteritidis in the United States. J Clin Microbiol 1991; 29: 2817–23.CrossRefGoogle ScholarPubMed
25.Frost, JA, Ward, LR, Rowe, B. Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24. Epidemiol Infect 1989; 103: 243–8.CrossRefGoogle ScholarPubMed
26.Chart, H, Rowe, B, Threlfall, EJ, Ward, LR. Conversion of Salmonella enteritidis phage type 4 to phage type 7 involves loss of lipopolysaccharide with concomitant loss of virulence. FEMS Microbiol Lett 1989; 60: 3740.CrossRefGoogle Scholar
27.Chart, H, Ward, LR, Rowe, B. Expression of lipopolysaccharide by phage types of Salmonella enteritidis. Lett Appl Microbiol 1991; 13: 3941.CrossRefGoogle Scholar
28.Threfall, EJ, Chart, H, Ward, LR, de Sa, JDH, Rowe, B. Interrelationships between strains of Salmonella enteritidis belonging to phage types 4, 7, 7a, 8, 13, 23, 24 and 30. J Appl Bact 1993; 75: 43–8.CrossRefGoogle Scholar
29.Harvey, D, Harrington, C, Heuzenroeder, MW, Murray, C. Lysogenic phage in Salmonella enterica serovar Heidelberg (Salmonella heidelberg): implications for organism tracing. FEMS Microbiol Lett 1993; 108: 291–6.CrossRefGoogle ScholarPubMed