Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-08T12:04:00.987Z Has data issue: false hasContentIssue false

The Process of Disinfection by Chemical Agencies and Hot Water

Published online by Cambridge University Press:  15 May 2009

Harriette Chick
Affiliation:
Assistant, Lister Institute of Preventive Medicine.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Krönig and Paul (1897) were the first to study the process of disinfection by making quantitative observations at intervals during its progress. Their figures showed that disinfection proceeded in an orderly manner and that the rate diminished as the number of survivors became less. Ikéda (1897) attempted to express their results by an empirical formula.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1910

References

BIBLIOGRAPHY

Bellei, (1904). Verbesserte Methode zur Bestimmung des Werthes von chemischen Desinfectionsmitteln. Münch. med. Wochenschr., No. 7.Google Scholar
Chick, (1908). An Investigation of the Laws of Disinfection. Journ. of Hyg., VIII. 92.Google Scholar
Chick, and Martin, (1908). The Principles involved in the Standardisation of Disinfectants. Journ. of Hyg., VIII. 655.Google Scholar
Chick, and Martin, (1910). On the “heat coagulation” of proteins. Journ. of Physiol., XL. 404.Google Scholar
Clark, and Gage, (1903). 34th Annual Report of the State Board of Health, Massachusetts.Google Scholar
Eijkman, (1908). Die Ueberlebungskurve bei Abtötung der Bakterien durch Hitze. Biochem. Zeitschr., XI. 12.Google Scholar
Eijkman, (2 T. ii. 1909). Investigations on the subject of Disinfection. K. Acad. van Metenschappen te Amsterdam.Google Scholar
Famulener, and Madsen, (1909). Die Abschwächung der Antigene durch Erwärmung. Biochem. Zeitschr., XI. 186.Google Scholar
Hewlett, (1909). Milroy Lectures on Disinfection and Disinfectants, reprinted from the Lancet (March 13, 20, and 27).Google Scholar
Ikeda, (1897). Die chemische Grundlage der Lehre von der Giftwirkung und Desinfektion. Zeitschr. f. Hyg., XXV. 95.Google Scholar
Krönig and Paul, (1897). Die chemische Grundlage der Lehre von der Giftwirkung und Desinfektion. Zeitschr. f Hyg., XXV. 1.Google Scholar
Lewith, (1890). Ueber die Ursache der Widerstandsfähigkeit der Sporen gegen hohe Temperaturen. Arch. f. exper. Path. u. Pharm., XXVI. 341.Google Scholar
Madsen, and Nyman, (1907). Zur Theorie der Desinfektion. Zeitschr. f. Hyg., LVII. 388.Google Scholar
Madsen, and Streng, (1909). Einfluss der Temperatur auf den Zerfall der Antikörper. Zeitschr. f. physikal. Chemie, LXX. 263.Google Scholar
Paul, (1909). Der chemische Reaktionsverlauf beim Absterben trockener Bakterien bei niederen Temperaturen. Biochem. Zeitschr., XVIII. 1.Google Scholar
Paul, Birstein and Reuss, (1910). Beitrag zur Kinetik des Absterbens der Bakterien in Sauerstoff verschiedener Konzentration und bei verschiedenen Temperaturen. Biochem. Zeitschr., XXV. 367.Google Scholar
Paul, and Prall, (1907). Die Wertbestimmung von Desinfektionsmitteln mit Staphylococcen die bei der Temperatur der flüssigen Luft aufbewahrt wurden. Arb. a. d. Kaiserl. Ges.-amt, XXVI. 424.Google Scholar
Reichel, (1909). Zur Theorie der Desinfektion. Biochem. Zeitschr., XXII. 149.Google Scholar
Rideal, and Walker, (1903). The Standardisation of Disinfectants. Journ. of the Roy. San. Inst., XXIV. 424.Google Scholar
Winslow, and Lockridge, (1906). The toxic effect of certain acids upon typhoid and colon bacilli in relation to their degree of dissociation. Journ. of Infectious Diseases, III. 547.Google Scholar
Yule, (1910). On the distribution of deaths with age when the causes of death act cumulatively, and similar frequency distributions. Journ. Roy. Statistical Soc., LXXIII.Google Scholar