Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-14T09:57:48.509Z Has data issue: false hasContentIssue false

Virulence determinants in Pseudomonas aeruginosa strains from urinary tract infections

Published online by Cambridge University Press:  15 May 2009

P. Visca
Affiliation:
Institute of Microbiology, Faculty of Medicine, University of Rome ‘La Sapienza’, P. le A. Moro, 5, 00185 Rome, Italy
F. Chiarini
Affiliation:
Institute of Microbiology, Faculty of Medicine, University of Rome ‘La Sapienza’, P. le A. Moro, 5, 00185 Rome, Italy
A. Mansi
Affiliation:
Institute of Microbiology, Faculty of Medicine, University of Rome ‘La Sapienza’, P. le A. Moro, 5, 00185 Rome, Italy
C. Vetriani
Affiliation:
Institute of Microbiology, Faculty of Medicine, University of Rome ‘La Sapienza’, P. le A. Moro, 5, 00185 Rome, Italy
L. Serino
Affiliation:
Institute of Microbiology, Faculty of Medicine, University of Rome ‘La Sapienza’, P. le A. Moro, 5, 00185 Rome, Italy
N. Orsi
Affiliation:
Institute of Microbiology, Faculty of Medicine, University of Rome ‘La Sapienza’, P. le A. Moro, 5, 00185 Rome, Italy
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A total of 121 uropathogenic Pseudomonas aeruginosa strains were examined for production of several virulence-related factors. These strains were distributed in five predominant O-serotypes, i.e. O 4, O 12, O 11, O 6 and O 5, which accounted respectively for 23·9, 23·1, 12·3, 8·2 and 5·7% of isolates. Pyochelin and pyoverdin siderophores were produced by most of the isolates, defective variants occurring at very low frequency (2·4% for pyochelin and 7·4% for pyoverdin). Adherence to uroepithelial cells and production of cytotoxins was demonstrated in 52·8 and 67·7% of the strains, respectively, with higher frequencies for epidemiologically related strains belonging to serotypes O 4 and O 12. Titration of total proteases, elastase and phospholipase C revealed a high degree of heterogeneity among isolates. However, examination of individual O-serotypes by exoenzyme production showed that elevated levels of total proteases and elastase were characteristics of serotypes of minor numerical importance, i.e. O 1, O 10, O 11 and O 17, whilst low levels of elastase were produced by strains belonging to the predominant serotypes, namely O 4 and O 12. Moreover, epidemiologically related strains belonging to serotypes O 4 and O 12 appeared more homogeneous than the whole serogroup, when compared with other groups on the basis of exoenzyme levels.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

REFERENCES

1.Botzenhart, K, Ruden, H. Hospital infections caused by Pseudomonas aeruginosa. In: Doring, G, Holder, IA, Botzenhart, K, eds. Basic research and clinical aspects of Pseudomonas aeruginosa. Basel, Munich, Paris, London, New York, New Delhi, Singapore, Tokyo, Sydney: Karger, 1987: 115.Google Scholar
2.Bodey, GP, Bolivar, R, Fainstein, V, Jadeja, L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 1983; 5: 279313.CrossRefGoogle ScholarPubMed
3.Brynger, HFP, Brunner, C, Chantler, RA et al. Combined report on regular dialysis and transplantation in Europe. X. 1979. In: Robinson, BHB, ed. Proceedings of the European dialysis and transplant association, Vol. 17. Tunbridge Wells: Pitman Medical Publishing, 1979; 286.Google Scholar
4.Kaye, D. Urinary tract infections in elderly. Bull NY Acad Med 1980; 56: 209–20.Google Scholar
5.Nicolle, LE, Muir, P, Harding, GKM, Norris, M. Localization of urinary tract infections in elderly institutionalized women with asymptomatic bacteriuria. J Infect Dis 1988; 157: 6570.CrossRefGoogle ScholarPubMed
6.Woods, DE, Straus, DC, Johanson, WG, Berry, VK, Bass, JA. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 1980; 29: 1146–51.CrossRefGoogle ScholarPubMed
7.Woods, DE, Bass, JA, Johanson, WG, Straus, DC. Role of adherence in the pathogenesis of Pseudomonas aeruginosa lung infections in cystic fibrosis patients. Infect Immun 1980; 30: 694–9.Google Scholar
8.Ramphal, R, Guay, C, Pier, GB. Pseudomonas aeruginosa adhesins for tracheobronchial mucin. Infect Immun 1987; 55: 600–3.CrossRefGoogle ScholarPubMed
9.Franklin, AL, Todd, T, Gurman, G, Black, D, Mankinen-Irvin, PM, Irvin, RT. Adherence of Pseudomonas aeruginosa to cilia of human tracheal epithelial cells. Infect Immun 1987; 55: 1523–5.CrossRefGoogle ScholarPubMed
10.Doig, P, Smith, NR, Todd, T, Irvin, RT. Characterization of the binding of Pseudomonas aeruginosa alginate to human epithelial cells. Infect Immun 1987; 55: 1517–22.Google Scholar
11.Anastassiou, ED, Mintzas, AC, Kounavis, C, Dimitracopoulos, G. Alginate production by clinical nonmucoid Pseudomonas aeruginosa strains. J. Clin Microbiol 1987; 25: 656–9.CrossRefGoogle ScholarPubMed
12.Liu, PV. Extracellular toxins of Pseudomonas aeruginosa. J Infect Dis 1974; 130 (suppl): S94–8.Google Scholar
13.Iglewsky, BH, Kabat, D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 1975; 72: 2284–8.Google Scholar
14.Ohman, DE, Burns, RP, Iglewsky, BH. Corneal infections in mice with toxin A and elastase mutants of Pseudomonas aeruginosa. J Infect Dis 1980; 142: 547–55.Google Scholar
15.Pavlovskis, OR, Wretlind, B. Pseudomonas aeruginosa toxins. In: Easmon, CFS. Jeljaszewicz, J, eds. Medical microbiology, Vol. I. London: Academic Press, 1982; 97128.Google Scholar
16.Cross, AS, Sadoff, JC, Iglewsky, BH, Sokol, PA. Evidence for the role of toxin A in the pathogenesis of infections with Pseudomonas aeruginosa in humans. J Infect Dis 1980; 142: 538–46.CrossRefGoogle ScholarPubMed
17.Iglewsky, BH, Sadoff, JC, Bjorn, MJ, Maxwell, S.Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyl-transferase distinct from toxin A. Proc Natl Acad Sci USA 1978; 75: 3211–15.Google Scholar
18.Sokol, PA, Iglewsky, BH. Ager, TA et al. Production of exoenzyme S by clinical isolates of Pseudomonas aeruginosa. Infect Immun 1981; 34: 147–53.Google Scholar
19.Woods, DE, Sokol, PA. Use of transposon mutants to assess the role of exoenzyme S in chronic pulmonary disease due to Pseudomonas aeruginosa. Europ J Clin Microbiol 1985; 4: 163–9.Google Scholar
20.Blackwood, LL, Stone, RM, Iglewsky, BH, Pennington, JE. Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infections. Infect Immun 1983; 39: 198201.CrossRefGoogle Scholar
21.Pavlovskis, OR, Wretlind, B. Assessment of protease (elastase) as a Pseudomonas aeruginosa virulence factor in experimental mouse burn infection. Infect Immun 1979; 24: 181–7.Google Scholar
22.Woods, DE, Cryz, SJ, Friedman, RL, Iglewsky, BH. Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infect Immun 1982; 36: 1223–8.Google Scholar
23.Ohman, DE, Cryz, SJ, Iglewsky, BH. Isolation and characterization of a Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 1980; 142: 836–42.Google Scholar
24.Jagger, KS, Bahner, DR, Warren, RL. Protease phenotypes of Pseudomonas aeruginosa isolated from patients with cystic fibrosis. J Clin Microbiol 1983; 17: 55–9.CrossRefGoogle ScholarPubMed
25.Berka, RM, Vasil, ML. Phospholipase C (heat-labile haemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization. J Bacteriol 1982; 152: 239–45.CrossRefGoogle ScholarPubMed
26.Berka, RM, Gray, GL, Vasil, ML. Studies of phospholipase C (heat-labile haemolysin) in Pseudomonas aeruginosa. Infect Immun 1981; 34: 1071–4.CrossRefGoogle ScholarPubMed
27.Cox, CD, Rinehart, KL, Moore, ML, Cook, JC.Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1981; 75: 4256–60.CrossRefGoogle Scholar
28.Cox, CD. Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infect Immun 1982; 36: 1722.CrossRefGoogle ScholarPubMed
29.Cox, CD, Adams, P. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 1985; 48: 130–8.CrossRefGoogle ScholarPubMed
30.Ankenbauer, R, Sriyosachati, S, Cox, CD. Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun 1985; 49: 132–40.CrossRefGoogle ScholarPubMed
31.Visca, P, Chiarini, F, Vetriani, C, Mansi, A, Serino, L, Orsi, N. Epidemiological typing of uropathogenic Pseudomonas aeruginosa strains from hospitalized patients. J Hosp Infect 1991; 19: 153–65.CrossRefGoogle ScholarPubMed
32.Pitt, TL, Livermore, DM, Pitcher, D, Vatopoulos, AC, Legakis, NJ. Multiresistant serotype O 12 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol Infect 1989; 103: 565–76.CrossRefGoogle ScholarPubMed
33.Gilmore, DS, Bruce, SK, Jimenez, Em, Schick, DG, Morrow, JW, Montgomerie, JZ. Pseudomonas aeruginosa colonization in patients with spinal cord injuries. J Clin Microbiol 1982; 16: 856–60.Google Scholar
34.Liu, PV, Matsumoto, H, Kusama, H, Bergan, T. Survey of heat stable, major somatic antigens of Pseudomonas aeruginosa. Int J Syst Bacteriol 1983; 33: 256–64.Google Scholar
35.Fyfe, JA, Harris, G, Govan, JRW. Revised pyocin typing method for Pseudomonas aeruginosa. J Clin Microbiol 1984; 20: 4750.CrossRefGoogle ScholarPubMed
36.Govan, JRW. Pyocin typing of Pseudomonas aeruginosa. In: Bergan, T, Norris, J, eds. Methods in microbiology, Vol 10. London: Academic Press, 1978; 6191.Google Scholar
37.Asheshov, EH. An assessment of the methods used to type strains of Pseudomonas aeruginosa. In: Arseni, A, ed. Proceedings of the sixth National Congress of Bacteriology. Athens: Leontiadi Medical Editions, 1974; 922.Google Scholar
38.Farmer, III J. Mnemonic for reporting bactericin and bacteriophage types. Lancet 1970; ii: 96.CrossRefGoogle Scholar
39.Tomarelli, RM, Charney, J, Harding, ML. The use of azoalbumin as substrate in the colorimetric determination of peptic and tryptie activity. J Lab Clin Med 1949; 34: 428–33.Google Scholar
40.Bjorn, MJ, Sokol, PA, Iglewsky, BH. Influence of iron on the yields of extracellular products in Pseudomonas aeruginosa cultures. J Bacteriol 1979; 138: 193200.CrossRefGoogle ScholarPubMed
41.Woods, DE, Schaffer, MS, Rabin, HR, Campbell, DG, Sokol, PA. Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol 1986; 24: 260–4.Google Scholar
42.Iglewsky, BH, Sadoff, MJ. Toxin inhibitors of protein synthesis: production, purification and assay of Pseudomonas aeruginosa toxin A. Methods Enzymol 1979; 60: 780–93.CrossRefGoogle Scholar
43.Woods, De, Que, JU. Purification of Pseudomonas aeruginosa exoenzyme S. Infect Immun 1987; 55: 579–86.Google Scholar
44.Cox, CD, Graham, R. Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 1979; 137: 357–64.Google Scholar
45.Meyer, JM, Abdallah, MA. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physiochemical properties. J Gen Microbiol 1978; 107: 319–28.CrossRefGoogle Scholar
46.Wahba, AH. Hospital infection with Pseudomonas pyocyanea. An investigation by a combined pyocine and serological typing method. Brit Med J 1965; i: 86–9.CrossRefGoogle Scholar
47.MrMoody, , Young, VM, Kenton, DM, Vermeulen, GD.Pseudomonas aeruginosa in a center for cancer research. I. Distribution of intraspecies types from human and environmental sources. J Infect Dis 1972; 125: 95101.CrossRefGoogle Scholar
48.Brokopp, CD, Gomez-Lus, R, Farmer, J III. Serological typing of Pseudomonas aeruginosa: use of commercial antisera and live antigens. J Clin Microbiol 1977; 5: 640–9.CrossRefGoogle ScholarPubMed
49.Pitt, TL. A comparison of flagellar typing and phage typing as means of subdividing the O-groups of Pseudomonas aeruginosa. J Med Microbiol 1981; 14: 261–70.Google Scholar
50.Legakis, NJ, Aliferopoulou, M, Papavassiliou, J, Papapetropoulou, M. Serotypes of Pseudomonas aeruginosa in clinical specimens in relation to antibiotic susceptibility. J Clin Microbiol 1982; 16: 458–63.Google Scholar
51.Farmer, JJ III, Weinstein, RA, Zierdt, CH, Brokopp, CD. Hospital outbreaks caused by Pseudomonas aeruginosa: importance of serogroup O 11. J Clin Microbiol 1982; 16: 266–70.CrossRefGoogle Scholar
52.Del, Piano M, La Palombara, P, Picci, A, Nicosia, R. Serological and pyocin typing and antibiotic sensitivity of Pseudomonas aeruginosa strains. Microbiologica 1986; 9: 253–8.Google Scholar
53.Dette, GA, Knothe, H, Schafer, V, Pirlet-Berninger, U. Serotyping sites of isolation and resistance of Pseudomonas aeruginosa. Microbiologica 1988; 11: 129–35.Google Scholar
54.Giammanco, A, Di, Stefano R, Arista, S, Sinatra, A, Chiarini, A. Infections caused by Pseudomonas aeruginosa: relatively frequent isolation of serogroup 12 from clinical specimens. Europ J Epidemiol 1985; 1: 104–9.CrossRefGoogle ScholarPubMed
55.Roberts, AP, Phillips, R. Bacteria causing symptomatic urinary tract infection or bacteriuria. J Clin Pathol 1979; 32: 492–7.CrossRefGoogle ScholarPubMed
56.Fegan, M, Francis, P, Hayward, AC, Davis, GHG, Fuerst, JA. Phenotypic conversion of Pseudomonas aeruginosa in cystic fibrosis. J Clin Microbiol 1990; 29: 1143–6.Google Scholar
57.Janda, JM, Bottone, EJ. Pseudomonas aeruginosa enzyme profiling: prediction of potential invasiveness and use as an epidemiological tool. J Clin Microbiol 1981; 14: 5560.CrossRefGoogle Scholar
58.Morihara, K, Tsuzuki, H. Production of protease and elastase by Pseudomonas aeruginosa strains isolated from patients. Infect Immun 1977; 15: 679–85.Google Scholar
59.Shand, GH, Anwar, H, Kadurugamuwa, J, Brown, MRW, Silverman, SH, Melling, J. In vivo evidence that bacteria from urinary tract infections grow under iron-restricted conditions. Infect Immun 1985; 48: 35–9.CrossRefGoogle ScholarPubMed
60.Finkelstain, RA, Sciortino, CV, McIntosh, MA. Role of iron in microbe-host interactions. Rev Infect Dis 1983; 5: 759–77.CrossRefGoogle Scholar
61.Ninane, G, Harper, PB. The in vitro activity of ceftazidime against a multi-resistant serotype O 12 Pseudomonas aeruginosa. Infection 1983; 11 (suppl 1): S1619.CrossRefGoogle Scholar
62.Legakis, NJ, Koukoubanis, N, Malliara, K, Michalitsianos, D, Papavassiliou, J. Importance of carbenicillin and gentamicin cross resistant serotype O 12 Pseudomonas aeruginosa in six Athens hospitals. Europ J Clin Microbiol 1987; 6: 300–3.CrossRefGoogle ScholarPubMed
63.Allemeersch, D, Beumer, J, Devleeschouwer, M et al. , Marked increase of Pseudomonas aeruginosa serotype O 12 in Belgium since 1982. Europ J Clin Microbiol Infect Dis 1988; 7: 265.CrossRefGoogle ScholarPubMed
64.Tzouvelekis, LS, Tumah, H, Malliara, K, Legakis, NJ. Relationship of antibiotic resistance phenotype to the R-pyocin susceptibility pattern in clinical isolates of Pseudomonas aeruginosa. J Chemother 1989; 1: 226–30.CrossRefGoogle Scholar
65.Vieu, JF, Allos, G, Hassan-Massoud, B, Santos, Ferreira MO, Tselentis, G.Existe-t-il une épidémiologie géographique des sérogroupes O de Pseudomonas aeruginosa? Bull Soc Pathol Exot 1984; 77: 288–94.Google Scholar