Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T13:25:51.109Z Has data issue: false hasContentIssue false

Dynamical properties of spatial discretizations of a generic homeomorphism

Published online by Cambridge University Press:  23 April 2014

PIERRE-ANTOINE GUIHÉNEUF*
Affiliation:
Laboratoire de mathématiques CNRS UMR 8628, Université Paris-Sud 11, Bât. 425, 91405 Orsay Cedex, France email pierre-antoine.guiheneuf@math.u-psud.fr

Abstract

This paper concerns the link between the dynamical behaviour of a dynamical system and the dynamical behaviour of its numerical simulations. Here, we model numerical truncation as a spatial discretization of the system. Some previous works on well-chosen examples (such as Gambaudo and Tresser [Some difficulties generated by small sinks in the numerical study of dynamical systems: two examples. Phys. Lett. A 94(9) (1983), 412–414]) show that the dynamical behaviours of dynamical systems and of their discretizations can be quite different. We are interested in generic homeomorphisms of compact manifolds. So our aim is to tackle the following question: can the dynamical properties of a generic homeomorphism be detected on the spatial discretizations of this homeomorphism? We will prove that the dynamics of a single discretization of a generic conservative homeomorphism does not depend on the homeomorphism itself, but rather on the grid used for the discretization. Therefore, dynamical properties of a given generic conservative homeomorphism cannot be detected using a single discretization. Nevertheless, we will also prove that some dynamical features of a generic conservative homeomorphism (such as the set of the periods of all periodic points) can be read on a sequence of finer and finer discretizations.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdenur, F. and Andersson, M.. Ergodic theory of generic continuous maps. Comm. Math. Phys. 318(3) (2013), 831855.CrossRefGoogle Scholar
Akin, E., Hurley, M. and Kennedy, J.. Dynamics of topologically generic homeomorphisms. Mem. Amer. Math. Soc. 164(783) (2003), viii+130.Google Scholar
Alpern, S.. New proofs that weak mixing is generic. Invent. Math. 32(3) (1976), 263278.CrossRefGoogle Scholar
Alpern, S.. Approximation to and by measure preserving homeomorphisms. J. Lond. Math. Soc. 18(2) (1978), 305315.CrossRefGoogle Scholar
Alpern, S. and Prasad, V.. Typical Dynamics of Volume Preserving Homeomorphisms. Cambridge University Press, Cambridge, 2000.Google Scholar
Benettin, G., Casartelli, M., Galgani, L., Giorgilli, A. and Strelcyn, J.-M.. On the reliability of numerical studies of stochasticity. I. Existence of time averages. Nuovo Cimento B (11) 44(1) (1978), 183195.CrossRefGoogle Scholar
Benettin, G., Casartelli, M., Galgani, L., Giorgilli, A. and Strelcyn, J.-M.. On the reliability of numerical studies of stochasticity. II. Identification of time averages. Nuovo Cimento B (11) 50(2) (1979), 211232.CrossRefGoogle Scholar
Binder, P. M.. Limit cycles in a quadratic discrete iteration. Physica D 57(1–2) (1992), 3138.CrossRefGoogle Scholar
Blank, M.. Ergodic properties of discretizations of dynamic systems. Dokl. Akad. Nauk. SSSR 278(4) (1984), 779782.Google Scholar
Blank, M.. Stochastic attractors and their small perturbations. Mathematical Problems of Statistical Mechanics and Dynamics (Mathematics & Applications (Soviet Series), 6). Reidel, Dordrecht, 1986, pp. 161197.CrossRefGoogle Scholar
Blank, M.. Small perturbations of chaotic dynamical systems. Uspekhi Mat. Nauk 44(6(270)) (1989), 328, 203.Google Scholar
Blank, M.. Pathologies generated by round-off in dynamical systems. Phys. D 78(1–2) (1994), 93114.CrossRefGoogle Scholar
Bollobás, B.. Random Graphs, 2nd edn. Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Boyarsky, A.. Computer orbits. Comput. Math. Appl. Ser. A 12(10) (1986), 10571064.Google Scholar
Dyson, F. and Falk, H.. Period of a discrete cat mapping. Amer. Math. Monthly 99(7) (1992), 603614.CrossRefGoogle Scholar
Daalderop, F. and Fokkink, R.. Chaotic homeomorphisms are generic. Topology Appl. 102(3) (2000), 297302.CrossRefGoogle Scholar
Diamond, P., Kozyakin, V., Kloeden, P. and Pokrovskii, A.. Computer robustness of semi-hyperbolic mappings. Random Comput. Dynam. 3(1–2) (1995), 5770.Google Scholar
Diamond, P., Kozyakin, V., Kloeden, P. and Pokrovskii, A.. Semihyperbolic mappings. J. Nonlinear Sci. 5(5) (1995), 419431.CrossRefGoogle Scholar
Diamond, P., Klemm, A., Kloeden, P. and Pokrovskii, A.. Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures. J. Statist. Phys. 84(3–4) (1996), 713733.CrossRefGoogle Scholar
Diamond, P., Kozyakin, V., Kloeden, P. and Pokrovskii, A.. A model for roundoff and collapse in computation of chaotic dynamical systems. Math. Comput. Simulation 44(2) (1997), 163185.CrossRefGoogle Scholar
Diamond, P., Kloeden, P. and Pokrovskii, A.. Numerical modeling of toroidal dynamical systems with invariant Lebesgue measure. Complex Systems 7(6) (1993), 415422.Google Scholar
Diamond, P., Kloeden, P. and Pokrovskii, A.. Weakly chain recurrent points and spatial discretizations of dynamical systems. Random Comput. Dynam. 2(1) (1994), 97110.Google Scholar
Diamond, P., Kloeden, P. and Pokrovskii, A.. The minimal center of attraction of measurable systems and their discretizations. J. Math. Anal. Appl. 200(1) (1996), 207223.CrossRefGoogle Scholar
Diamond, P., Kloeden, P., Pokrovskii, A. and Vladimirov, A.. Collapsing effects in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre. Phys. D 86(4) (1995), 559571.CrossRefGoogle Scholar
Diamond, P. and Pokrovskii, A.. Statistical laws for computational collapse of discretized chaotic mappings. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6(12A) (1996), 23892399.CrossRefGoogle Scholar
Diamond, P., Suzuki, M., Kloeden, P. and Pokrovskii, P.. Statistical properties of discretizations of a class of chaotic dynamical systems. Comput. Math. Appl. 31(11) (1996), 8395.CrossRefGoogle Scholar
Góra, P. and Boyarsky, A.. Why computers like Lebesgue measure. Comput. Math. Appl. 16(4) (1988), 321329.CrossRefGoogle Scholar
Ghys, E.. Variations on Pioncarés recurrence theorem. The Scientific Legacy of Pioncaré (History of Mathematics, 36). American Mathematical Society, Providence, RI, 2010, pp. 193206.Google Scholar
Glasner, E. and King, J.. A zero-one law for dynamical properties. Topological Dynamics and Applications (Contemporary Mathematics, 215). American Mathematical Society, Providence, RI, 1998, pp. 231242.CrossRefGoogle Scholar
Gambaudo, J.-M. and Tresser, C.. Some difficulties generated by small sinks in the numerical study of dynamical systems: two examples. Phys. Lett. A 94(9) (1983), 412414.CrossRefGoogle Scholar
Guihéneuf, P.-A.. Propriétés dynamiques génériques des homéomorphismes conservatifs. (Ensaios Matemáticos [Mathematical Surveys], 22). Sociedade Brasileira de Matemática, Rio de Janeiro, 2012.Google Scholar
Halmos, P.. Lectures on Ergodic Theory. Chelsa, New York, 1960.Google Scholar
Hayashi, S.. On the observability of periodic orbits for diffeomorphisms, January 2012.Google Scholar
Hammel, S. M., Yorke, J. and Grebogi, C.. Do numerical orbits of chaotic dynamical processes represent true orbits?. J. Complexity 3(2) (1987), 136145.CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, 1995.CrossRefGoogle Scholar
Kloeden, P. and Mustard, J.. Constructing permutations that approximate Lebesgue measure preserving dynamical systems under spatial discretization. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7(2) (1997), 401406.CrossRefGoogle Scholar
Katok, A. and Stepin, A.. Metric properties of measure preserving homeomorphisms. Russian Math. Surveys 25(2) (1970), 191220.CrossRefGoogle Scholar
Lanford, O. E.. Informal remarks on the orbit structure of discrete approximations to chaotic maps. Experiment. Math. 7(4) (1998), 317324.CrossRefGoogle Scholar
Lax, P.. Approximation of meausre preserving transformations. Comm. Pure Appl. Math. 24 (1971), 133135.CrossRefGoogle Scholar
Luzzatto, S. and Pilarczyk, P.. Finite resolution dynamics. Found. Comput. Math. 11(2) (2011), 211239.CrossRefGoogle Scholar
Miernowski, T.. Dynamique discrétisée et stochastique, géométrie conforme. PhD Thesis, ENS Lyon, 2005.Google Scholar
Miernowski, T.. Discrétisations des homéomorphismes du cercle. Ergod. Th. & Dynam. Sys. 26(6) (2006), 18671903.CrossRefGoogle Scholar
Mrozek, M.. Topological invariants, multivalued maps and computer assisted proofs in dynamics. Comput. Math. Appl. 32(4) (1996), 83104.CrossRefGoogle Scholar
Nusse, H. and Yorke, J.. Is every approximate trajectory of some process near an exact trajectory of a nearby process?. Comm. Math. Phys. 114(3) (1988), 363379.CrossRefGoogle Scholar
Oxtoby, J. and Ulam, S.. Measure-preserving homeomorphisms and metrical transitivity. Ann. of Math. (2) 42(2) (1941), 874920.CrossRefGoogle Scholar
Pilyugin, S. Yu. and Plamenevskaya, O. B.. Shadowing is generic. Topology Appl. 97(3) (1999), 253266.CrossRefGoogle Scholar
Scarowsky, M. and Boyarsky, A.. Long periodic orbits of the triangle map. Proc. Amer. Math. Soc. 97(2) (1986), 247254.CrossRefGoogle Scholar
Young, L.-S.. What are SRB measures, and which dynamical systems have them?. J. Stat. Phys. 108(5) (2002), 733754.CrossRefGoogle Scholar