Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T08:28:59.775Z Has data issue: false hasContentIssue false

Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps

Published online by Cambridge University Press:  30 June 2011

CHINMAYA GUPTA
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA (email: ccgupta@math.uh.edu, nicol@math.uh.edu)
MARK HOLLAND
Affiliation:
Math Research Institute, University of Exeter, UK (email: m.p.holland@exeter.ac.uk)
MATTHEW NICOL
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA (email: ccgupta@math.uh.edu, nicol@math.uh.edu)

Abstract

In this paper we establish extreme value statistics for observations on a class of hyperbolic systems: planar dispersing billiard maps and flows, Lozi maps and Lorenz-like maps. In particular, we show that for time series arising from Hölder observations on these systems which are maximized at generic points the successive maxima of the time series are distributed according to the corresponding extreme value distributions for independent identically distributed processes. These results imply an exponential law for the hitting and return time statistics of these dynamical systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, Singapore, 2000.CrossRefGoogle Scholar
[2]Barriera, L., Pesin, Y. and Schmeling, J.. Dimension and product structure of hyperbolic measures. Ann. of Math. (2) 149 (1999), 755783.Google Scholar
[3]Bunimovich, L. A., Sinai, Ya. G. and Chernov, N. I.. Russian Math. Surveys 45(3) (1990), 105152.Google Scholar
[4]Bunimovich, L. A., Sinai, Ya. G. and Chernov, N. I.. Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991), 47106.CrossRefGoogle Scholar
[5]Chernov, N.. Decay of correlations in dispersing billiards. J. Stat. Phys. 94 (1999), 513556.Google Scholar
[6]Collet, P.. Statistics of closest return for some non-uniformly hyperbolic systems. Ergod. Th. & Dynam. Sys. 21 (2001), 401420.CrossRefGoogle Scholar
[7]Collet, P. and Levy, Y.. Ergodic properties of the Lozi mappings. Comm. Math. Phys. 93 (1984), 461481.Google Scholar
[8]Díaz-Ordaz, K.. Decay of correlations for non-Holder observables for expanding Lorenz-like one-dimensional maps. Discrete Contin. Dyn. Syst. 15 (2006), 159176.Google Scholar
[9]Dolgopyat, D.. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2004), 16371689.CrossRefGoogle Scholar
[10]Freitas, A. C. M. and Freitas, J. M.. On the link between dependence and independence in extreme value theory for dynamical systems. Statist. Probab. Lett. 78 (2008), 10881093.CrossRefGoogle Scholar
[11]Freitas, J. and Freitas, A.. Extreme values for Benedicks Carleson quadratic maps. Ergod. Th. & Dynam. Sys. 28(4) (2008), 11171133.Google Scholar
[12]Freitas, J., Freitas, A. and Todd, M.. Hitting times and extreme values. Probab. Theory Related Fields 147(3) (2010), 675710.CrossRefGoogle Scholar
[13]Freitas, J., Freitas, A. and Todd, M.. Extreme value laws in dynamical systems for non-smooth observations. Preprint, 2010.Google Scholar
[14]Galambos, J.. The Asymptotic Theory of Extreme Order Statistics. John Wiley, New York, 1978.Google Scholar
[15]Guckenheimer, J. and Williams, R. F.. Structural stability of Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 5972.CrossRefGoogle Scholar
[16]Haydn, N., Lacroix, Y. and Vaienti, S.. Hitting and return time statistics in ergodic dynamical systems. Ann. Probab. 33 (2205), 20432050.Google Scholar
[17]Hirata, M.. Poisson limit law for Axiom-A diffeomorphisms. Ergod. Th. & Dynam. Sys. 13 (1993), 533556.CrossRefGoogle Scholar
[18]Holland, M. P., Nicol, M. and Török, A.. Extreme value distributions for non-uniformly hyperbolic dynamical systems. Trans. Amer. Math. Soc. to appear.Google Scholar
[19]Leadbetter, M. R., Lindgren, G. and Rootzén, H.. Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983.Google Scholar
[20]Ledrappier, F.. Dimension of invariant measures, proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986). Teubner-Texte Math. 94 (1987), 116124.Google Scholar
[21]Lorenz, E. D.. Deterministic nonperiodic flow. J. Atmospheric Sci. 20 (1963), 130141.Google Scholar
[22]Misiurewicz, M.. Strange attractors for the Lozi mappings. Non Linear Dynamics. Ed. Helleman, R. G.. The New York Academy of Sciences, New York, 1980.Google Scholar
[23]Resnick, S. I.. Extreme Values, Regular Variation, and Point Processes (Applied Probability Trust, 4). Springer, New York, 1987.CrossRefGoogle Scholar
[24]Rudin, W.. Real and Complex Analysis, 3rd edn. McGraw Hill Book Company, 1987.Google Scholar
[25]Tucker, W.. The Lorenz attractor exists. C. R. Acad. Sci. Paris 328 (1999), 11971202.Google Scholar
[26]Tucker, W.. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2 (2002), 53117.Google Scholar
[27]Williams, R. F.. The structure of Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 7399.CrossRefGoogle Scholar
[28]Young, L. S.. Bowen–Ruelle measures for certain piecewise hyperbolic maps. Trans. Amer. Math. Soc. 287 (1985), 4148.CrossRefGoogle Scholar
[29]Young, L.-S.. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147 (1998), 585650.CrossRefGoogle Scholar
[30]Viana, M.. Stochastic dynamics of deterministic systems. Braz. Math. Colloq. 21 (1997), IMPA.Google Scholar