Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T11:17:56.107Z Has data issue: false hasContentIssue false

On Finsler surfaces without conjugate points

Published online by Cambridge University Press:  07 February 2012

JOSÉ BARBOSA GOMES
Affiliation:
Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil (email: barbosa.gomes@ufjf.edu.br)
RAFAEL O. RUGGIERO
Affiliation:
Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22453-900, Brazil (email: rorr@mat.puc-rio.br)

Abstract

If (M,F) is a C4 compact Finsler surface of genus at least two without conjugate points, we show that the first integrals of the geodesic flow are constant. Using this fact, we show that if (M,F) is also of Landsberg type then (M,F) is Riemannian. The connection between the absence of conjugate points and the Riemannian character of the Finsler metric has some remarkable consequences concerning rigidity.

Type
Research Article
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Akbar-Zadeh, H.. Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy. Belg. Bull. C1. Sci. 74(5) (1988), 281322.Google Scholar
[2]Bao, D.. On two curvature-driven problems in Riemann–Finsler geometry. Finsler Geometry, Sapporo 2005. Part II: Hunting Unicorns and Other Topics of Global Finsler Geometry (Advanced Studies in Pure Mathematics, 48). Eds. Sabau, S. V. and Shimada, H.. Mathematical Society of Japan, Tokyo, 2007, pp. 1972.Google Scholar
[3]Bao, D., Chern, S. S. and Shen, Z.. Rigidity issues on Finsler surfaces. Rev. Roumaine Math. Pures Appl. 42 (1997), 707735.Google Scholar
[4]Bao, D., Chern, S.-S and Shen, Z.. An Introduction to Riemann–Finsler Geometry. Springer, New York, 2000.Google Scholar
[5]Contreras, G. and Iturriaga, R.. Convex Hamiltonians without conjugate points. Ergod. Th. & Dynam. Sys. 19 (1999), 901952.Google Scholar
[6]Contreras, G., Iturriaga, R., Paternain, G. P. and Paternain, M.. Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8 (1998), 788809.CrossRefGoogle Scholar
[7]Dias Carneiro, M. J. and Ruggiero, R.. On Birkhoff theorems for Lagrangian invariant tori with closed orbits. Manuscripta Math. 119 (2006), 411432.Google Scholar
[8]Dinaburg, E. I.. On the relations among various entropy characteristics of dynamical systems. Math. USSR Izv. 5 (1971), 337378.Google Scholar
[9]Eberlein, P.. Geodesic flow in certain manifolds without conjugate points. Trans. Amer. Math, Soc. 167 (1972), 151170.Google Scholar
[10]Egloff, D.. On the dynamics of uniform Finsler manifolds of negative flag curvature. Ann. Global. Anal. Geom. 15 (1997), 101116.CrossRefGoogle Scholar
[11]Foulon, P.. Estimation de l’entropie des systèmes lagrangiens sans points conjugués. Ann. Inst. Henri Poincaré Phys. Théor. 57 (1992), 117146.Google Scholar
[12]Foulon, P.. Locally symmetric Finsler spaces in negative curvature. C. R. Acad. Sci. Paris, Ser. I 324 (1997), 11271132.Google Scholar
[13]Ghys, E.. Flots d’Anosov dont les feuilletages stables sont différentiables. Ann. Sci. Éc. Norm. Supér. 20 (1987), 251270.Google Scholar
[14]Green, L. W.. Surfaces without conjugate points. Trans. Amer. Math. Soc. 76 (1954), 529546.CrossRefGoogle Scholar
[15]Gomes, J. B. and Ruggiero, R. O.. Rigidity of surfaces whose geodesic flows preserve smooth foliations of codimension 1. Proc. Amer. Math. Soc. 135 (2007), 507515.Google Scholar
[16]Gomes, J. B. and Ruggiero, R. O.. Uniqueness of central foliations of geodesic flows for compact surfaces without conjugate points. Nonlinearity 20 (2007), 497515.Google Scholar
[17]Gomes, J. B. and Ruggiero, R. O.. Rigidity of magnetic flows for compact surfaces. Comptes Rendus Acad. Sci. Paris, Ser. I 346 (2008), 313316.Google Scholar
[18]Hurder, S. and Katok, A.. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Publ. Math. Inst. Hautes Etudes Sci. 72 (1990), 561.Google Scholar
[19]Ikeda, F.. On two-dimensional Landsberg spaces. Tensor (N.S.) 33 (1979), 4348.Google Scholar
[20]Katok, A.. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.CrossRefGoogle Scholar
[21]Mañé, R.. On a theorem of Klingenberg. Dynamical Systems and Bifurcation Theory. Eds. Camacho, M. I., Pacífico, M. J. and Takens, F.. Longman Scientific & Technical, New York, 1987, pp. 319345.Google Scholar
[22]Matveev, V. S.. On ‘All regular Landsberg metrics are always Berwald’ by Z. I. Szabó. Balkan J. Geom. Appl. 14(2) (2009), 5052.Google Scholar
[23]Morse, H. M.. A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Amer. Math. Soc. 26 (1924), 2560.Google Scholar
[24]Paternain, G. P.. Finsler structures on surfaces with negative Euler characteristic. Houston J. Math. 23 (1997), 421426.Google Scholar
[25]Shen, Z.. Lectures on Finsler Geometry. World Scientific Publishing, Singapore, 2001.Google Scholar
[26]Szabó, Z. I.. Positive definite Berwald spaces (Structure theorems on Berwald spaces). Tensor (N.S.) 35 (1981), 2539.Google Scholar
[27]Szabó, Z. I.. All regular Landsberg metrics are Berwald. Ann. Glob. Anal. Geom. 34 (2008), 381386.Google Scholar