Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-16T07:28:02.735Z Has data issue: false hasContentIssue false

On torus homeomorphisms semiconjugate to irrational rotations

Published online by Cambridge University Press:  30 June 2014

T. JÄGER
Affiliation:
Department of Mathematics, TU-Dresden, 01062 Dresden, Germany email Tobias.Oertel-Jaeger@tu-dresden.de, alepasseggi@gmail.com
A. PASSEGGI
Affiliation:
Department of Mathematics, TU-Dresden, 01062 Dresden, Germany email Tobias.Oertel-Jaeger@tu-dresden.de, alepasseggi@gmail.com

Abstract

In the context of the Franks–Misiurewicz conjecture, we study homeomorphisms of the two-torus semiconjugate to an irrational rotation of the circle. As a special case, this conjecture asserts uniqueness of the rotation vector in this class of systems. We first characterize these maps by the existence of an invariant ‘foliation’ by essential annular continua (essential subcontinua of the torus whose complement is an open annulus) which are permuted with irrational combinatorics. This result places the considered class close to skew products over irrational rotations. Generalizing a well-known result of Herman on forced circle homeomorphisms, we provide a criterion, in terms of topological properties of the annular continua, for the uniqueness of the rotation vector. As a byproduct, we obtain a simple proof for the uniqueness of the rotation vector on decomposable invariant annular continua with empty interior. In addition, we collect a number of observations on the topology and rotation intervals of invariant annular continua with empty interior.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johnson, R. and Moser, J.. The rotation numer for almost periodic potentials. Comm. Math. Phys. 4 (1982), 403438.CrossRefGoogle Scholar
Perkel, D. H., Schulman, J. H. , Bullock, T. H. , Moore, G. P. and Segundo, J. P.. Pacemaker neurons: effects of regularly spaced synaptic input. Science 145 (1964), 6163.CrossRefGoogle ScholarPubMed
Misiurewicz, M. and Ziemian, K.. Rotation sets for maps of tori. J. Lond. Math. Soc. 40 (1989), 490506.CrossRefGoogle Scholar
Llibre, J. and MacKay, R. S.. Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Th. & Dynam. Sys. 11 (1991), 115128.CrossRefGoogle Scholar
Franks, J.. Realizing rotation vectors for torus homeomorphisms. Trans. Amer. Math. Soc. 311 (1989), 107115.CrossRefGoogle Scholar
Jäger, T.. Linearisation of conservative toral homeomorphisms. Invent. Math. 176 (2009), 601616.CrossRefGoogle Scholar
Jäger, T.. The concept of bounded mean motion for toral homeomorphisms. Dynam. Syst. 24 (2009), 277297.CrossRefGoogle Scholar
Koropecki, A. and Armando Tal, F.. Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion. Preprint, 2012, arXiv:1206.2409.Google Scholar
Koropecki, A. and Armando Tal, F.. Bounded and unbounded behavior for area-preserving rational pseudo-rotations. Preprint, 2012, arXiv:1207.5573.Google Scholar
Franks, J. and Misiurewicz, M.. Rotation sets of toral flows. Proc. Amer. Math. Soc. 109 (1990), 243249.CrossRefGoogle Scholar
Davalos, P.. On torus homeomorphisms whose rotation set is an interval. Math. Z. 275(3–4) (2013), 10051045.CrossRefGoogle Scholar
Guelman, N., Koropecki, A. and Armando Tal, F.. A characterization of annularity for area-preserving toral homeomorphisms. Math. Z. 276(3–4) (2014), 673689.CrossRefGoogle Scholar
Davalos, P.. On annular maps of the torus and sublinear diffusion. Preprint, 2013, arXiv:1311.0046.Google Scholar
Misiurewicz, M. and Ziemian, K.. Rotation sets and ergodic measures for torus homeomorphisms. Fund. Math. 137 (1991), 4552.CrossRefGoogle Scholar
Le Calvez, P.. Propriétés dynamiques des difféomorphismes de l’anneau et du tore. Astérisque 204 (1991).Google Scholar
Kwapisz, J.. Combinatorics of torus diffeomorphisms. Ergod. Th. & Dynam. Sys. 23 (2003), 559586.Google Scholar
Le Calvez, P.. Une version feuilleté équivariante du théorème de translation de Brouwer. Publ. Math. Inst. Hautes Études Sci. 102 (2005), 198.CrossRefGoogle Scholar
Jäger, T.. Elliptic stars in a chaotic night. J. Lond. Math. Soc. 84 (2011), 595611.CrossRefGoogle Scholar
Koropecki, A. and Armando Tal, F.. Strictly toral dynamics. Invent. Math. 196(2) (2014), 339381.CrossRefGoogle Scholar
Kwapisz, J.. Poincaré rotation number for maps of the real line with almost periodic displacement. Nonlinearity 13 (2000), 1854.CrossRefGoogle Scholar
Herman, M.. Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983), 453502.CrossRefGoogle Scholar
Koropecki, A.. On the dynamics of torus homeomorphisms. PhD Thesis, IMPA (Brasil), 2007.Google Scholar
Barge, M. and Gillette, R. M.. Rotation and periodicity in plane separating continua. Ergod. Th. & Dynam. Sys. 11 (1991), 619631.CrossRefGoogle Scholar
Le Calvez, P.. Unpublished manuscript. Personal communication.Google Scholar
Carathéodory, C.. Über die Begrenzung einfach zusammenhängender Gebiete. Math. Ann. 73 (1913), 323370.CrossRefGoogle Scholar
Carathéodory, C.. Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis. Math. Ann. 73 (1913), 305320.CrossRefGoogle Scholar
Le Calvez, P., Koropecki, A. and Nassiri, M.. Prime ends rotation numbers and periodic points. Preprint, 2012, arXiv:1206.4707.Google Scholar
Le Calvez, P.. Propriétés des attracteurs de Birkhoff. Ergod. Th. & Dynam. Sys. 8 (1988), 241310.CrossRefGoogle Scholar
Bing, R. H.. Concerning hereditarily indecomposable continua. Pacific J. Math. 1 (1951), 4351.CrossRefGoogle Scholar
Handel, M.. A pathological area preserving C diffeomorphism of the plane. Proc. Amer. Math. Soc. 86 (1982), 163168.Google Scholar
Herman, M.. Construction of some curious diffeomorphisms of the Rieman sphere. J. Lond. Math. Soc. 34 (1986), 375384.CrossRefGoogle Scholar
Walker, R.. Periodicity and decomposability of basin boundaries with irrational maps on prime ends. Trans. Amer. Math. Soc. 324 (1991), 303317.CrossRefGoogle Scholar
Hatcher, A.. Algebraic Topology. Cambridge University Press, Cambridge, 2002.Google Scholar
Newman, M. H. A.. Elements of the Topology of Plane Sets of Points. Dover Publications, New York, 1992.Google Scholar
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1997.Google Scholar
Stark, J. and Sturman, R.. Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity 13 (2000), 113143.Google Scholar
Potrie, R.. Recurrence of non-resonant torus homeomorphisms. Proc. Amer. Math. Soc. 140 (2012), 39733981.CrossRefGoogle Scholar
Franks, J.. Generalizations of the Poincaré–Birkhoff theorem. Ann. of Math. (2) 128 (1988), 139151.CrossRefGoogle Scholar
Bing, R. H.. A homogeneous indecomposable plane continuum. Duke Math. J. 15 (1948), 729742.CrossRefGoogle Scholar
Cartwright, M. L. and Littlewood, J. E.. Some fixed point theorems. Ann. Math. 54 (1951), 137.CrossRefGoogle Scholar
Hocking, J. G. and Young, G. S.. Topology. Addison-Wesley, Reading, MA, 1961.Google Scholar