Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-08T18:10:41.139Z Has data issue: false hasContentIssue false

Disjoint hypercyclicity, Sidon sets and weakly mixing operators

Published online by Cambridge University Press:  22 August 2023

RODRIGO CARDECCIA*
Affiliation:
Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A. and CONICET, Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, Argentina

Abstract

We prove that a finite set of natural numbers J satisfies that $J\cup \{0\}$ is not Sidon if and only if for any operator T, the disjoint hypercyclicity of $\{T^j:j\in J\}$ implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that $T\oplus T^2\oplus\cdots \oplus T^n$ is hypercyclic for every n.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayart, F. and Matheron, E.. Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250(2) (2007), 426441.10.1016/j.jfa.2007.05.001CrossRefGoogle Scholar
Bayart, F. and Matheron, E.. Dynamics of Linear Operators (Cambridge Tracts in Mathematics, 179). Cambridge University Press, Cambridge, 2009.10.1017/CBO9780511581113CrossRefGoogle Scholar
Bayart, F. and Matheron, E.. (Non-)weakly mixing operators and hypercyclicity sets. Ann. Inst. Fourier (Grenoble) 59(1) (2009), 135.10.5802/aif.2425CrossRefGoogle Scholar
Bernal-González, L.. Disjoint hypercyclic operators. Studia Math. 182(2) (2007), 113131.10.4064/sm182-2-2CrossRefGoogle Scholar
Bès, J., Martin, O., Peris, A. and Shkarin, S.. Disjoint mixing operators. J. Funct. Anal. 263(5) (2012), 12831322.10.1016/j.jfa.2012.05.018CrossRefGoogle Scholar
Bès, J., Menet, Q., Peris, A. and Puig, Y.. Recurrence properties of hypercyclic operators. Math. Ann. 366(1–2) (2016), 545572.10.1007/s00208-015-1336-3CrossRefGoogle Scholar
Bès, J., Menet, Q., Peris, A. and Puig, Y.. Strong transitivity properties for operators. J. Differential Equations 266(2–3) (2019), 13131337.10.1016/j.jde.2018.07.076CrossRefGoogle Scholar
Bès, J. and Peris, A.. Hereditarily hypercyclic operators. J. Funct. Anal. 167(1) (1999), 94112.10.1006/jfan.1999.3437CrossRefGoogle Scholar
Bès, J. and Peris, A.. Disjointness in hypercyclicity. J. Math. Anal. Appl. 336(1) (2007), 297315.10.1016/j.jmaa.2007.02.043CrossRefGoogle Scholar
Bonilla, A. and Grosse-Erdmann, K.-G.. Upper frequent hypercyclicity and related notions. Rev. Mat. Complut. 31(3) (2018), 673711.10.1007/s13163-018-0260-yCrossRefGoogle Scholar
Bonilla, A., Grosse-Erdmann, K.-G., López-Martínez, A. and Peris, A.. Frequently recurrent operators. J. Funct. Anal. 283(12) (2022), 109713.10.1016/j.jfa.2022.109713CrossRefGoogle Scholar
Cardeccia, R. and Muro, S.. Arithmetic progressions and chaos in linear dynamics. Integral Equations Operator Theory 94 (2022), 11.10.1007/s00020-022-02687-3CrossRefGoogle Scholar
Cardeccia, R. and Muro, S.. Multiple recurrence and hypercyclicity. Math. Scand. 128 (2022), 133256.10.7146/math.scand.a-133256CrossRefGoogle Scholar
Cilleruelo, J., Sidon sets in ${\mathbb{N}}^d$ . J. Combin. Theory Ser. A 117(7) (2010), 857871.10.1016/j.jcta.2009.12.003CrossRefGoogle Scholar
De La Rosa, M. and Read, C.. A hypercyclic operator whose direct sum $T\oplus T$ is not hypercyclic. J. Operator Theory 61(2) (2009), 369380.Google Scholar
Desch, W. and Schappacher, W.. On products of hypercyclic semigroups. Semigroup Forum 71(2) (2005), 301311.10.1007/s00233-005-0523-zCrossRefGoogle Scholar
Erdős, P.. Some problems in number theory, combinatorics and combinatorial geometry. Math. Pannon. 5(2) (1994), 261269.Google Scholar
Erdős, P. and Turán, P.. On a problem of Sidon in additive number theory, and on some related problems. J. Lond. Math. Soc. (2) 16 (1941), 212215.10.1112/jlms/s1-16.4.212CrossRefGoogle Scholar
Ernst, R., Esser, C. and Menet, Q.. $\mathbf{\mathcal{U}}$ -frequent hypercyclicity notions and related weighted densities. Israel J. Math. 241(2) (2021), 817848.10.1007/s11856-021-2115-3CrossRefGoogle Scholar
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures.10.1515/9781400855162CrossRefGoogle Scholar
Grosse-Erdmann, K.-G. and Peris Manguillot, A.. Linear Chaos. Springer, Berlin, 2011.10.1007/978-1-4471-2170-1CrossRefGoogle Scholar
Herrero, D. A.. Hypercyclic operators and chaos. J. Operator Theory 28(1) (1992), 93103.Google Scholar
Lindström, B.. An inequality for ${B}_2$ -sequences. J. Combin. Theory 6 (1969), 211212.10.1016/S0021-9800(69)80124-9CrossRefGoogle Scholar
Moothathu, T. K. S.. Diagonal points having dense orbit. Colloq. Math. 120(1) (2010), 127138.10.4064/cm120-1-9CrossRefGoogle Scholar
Sanders, R. and Shkarin, S.. Existence of disjoint weakly mixing operators that fail to satisfy the disjoint hypercyclicity criterion. J. Math. Anal. Appl. 417(2) (2014), 834855.10.1016/j.jmaa.2014.03.063CrossRefGoogle Scholar
Shkarin, S.. A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367(2) (2010), 713715.10.1016/j.jmaa.2010.01.005CrossRefGoogle Scholar
Singer, J.. A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43(3) (1938), 377385.10.1090/S0002-9947-1938-1501951-4CrossRefGoogle Scholar