Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T17:28:42.708Z Has data issue: false hasContentIssue false

Existence of periodic orbits for geodesible vector fields on closed 3-manifolds

Published online by Cambridge University Press:  24 November 2009

ANA RECHTMAN*
Affiliation:
Unité de Mathématiques Pures et Appliquées, UMR 5669 CNRS, École Normale Supérieure de Lyon, 46, Allée d’Italie, 69364 Lyon Cedex 07, France (email: ana.rechtman@umpa.ens-lyon.fr)

Abstract

In this paper we deal with the existence of periodic orbits of geodesible vector fields on closed 3-manifolds. A vector field is geodesible if there exists a Riemannian metric on the ambient manifold making its orbits geodesics. In particular, Reeb vector fields and vector fields that admit a global section are geodesible. We will classify the closed 3-manifolds that admit aperiodic volume-preserving Cω geodesible vector fields, and prove the existence of periodic orbits for Cω geodesible vector fields (not volume preserving), when the 3-manifold is not a torus bundle over the circle. We will also prove the existence of periodic orbits of C2 geodesible vector fields on some closed 3-manifolds.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abraham, R., Marsden, J. E. and Ratiu, T.. Manifolds, Tensor Analysis, and Applications, 2nd edn(Applied Mathematical Sciences, 75). Springer, Berlin, 1988.CrossRefGoogle Scholar
[2]Arnold, V. I. and Khesin, B. A.. Topological Methods in Hydrodynamics (Applied Mathematical Sciences, 125). Springer, Berlin, 1998.CrossRefGoogle Scholar
[3]Dombre, T., Frisch, U., Greene, J., Hénon, M., Mehr, A. and Soward, A.. Chaotic streamlines in the ABC flows. J. Fluid Mech. 167 (1986), 353391.CrossRefGoogle Scholar
[4]Epstein, D. B. A.. Periodic flows on three-manifolds. Ann. of Math. (2) 95(1) (1972), 6682.CrossRefGoogle Scholar
[5]Epstein, D. B. A. and Vogt, E.. A counterexample to the periodic orbit conjecture in codimension 3. Ann. of Math. (2) 108(3) (1978), 539552.CrossRefGoogle Scholar
[6]Etnyre, J. and Ghrist, R.. Contact topology and hydrodynamics. II. Solid tori. Ergod. Th. & Dynam. Sys. 22(3) (2002), 819833.CrossRefGoogle Scholar
[7]Etnyre, J. and Ghrist, R.. Contact topology and hydrodynamics. I. Beltrami fields and the Seifert conjecture. Nonlinearity 13(2) (2000), 441458.CrossRefGoogle Scholar
[8]Giroux, E.. Convexité en topologie de contact. Comment. Math. Helv. 66(4) (1991), 637677.CrossRefGoogle Scholar
[9]Gluck, H.. Dynamical behavior of geodesic fields. Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern University, Evanston, Ill., 1979) (Lecture Notes in Mathematics, 819). Springer, Berlin, 1980, pp. 190215.CrossRefGoogle Scholar
[10]Greenberg, M.. Lectures on Algebraic Geometry. Northeastern University, W. A. Benjamin Inc., CA, 1971.Google Scholar
[11]Hatcher, A.. Notes on basic topology of 3-manifolds, 2000,http://www.math.cornell.edu/∼hatcher/3M/3Mdownloads.html.Google Scholar
[12]Hofer, H.. Holomorphic curves and dynamics in dimension three. Symplectic Geometry and Topology (Park City, UT, 1997) (IAS/Park City Mathematics Series, 7). American Mathematical Society, Providence, RI, pp. 35101.Google Scholar
[13]Hutchings, M. and Taubes, C. H.. The Weinstein conjecture for stable Hamiltonian structures, 2008, http://arxiv.org/abs/0809.0140.Google Scholar
[14]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[15]Kuperberg, G.. A volume-preserving counterexample to the Seifert conjecture. Comment. Math. Helv. 71(1) (1996), 7097.CrossRefGoogle Scholar
[16]Kuperberg, K.. A smooth counterexample to the Seifert conjecture. Ann. of Math. (2) 140(3) (1994), 723732.CrossRefGoogle Scholar
[17]Laudenbach, F.. Relèvement linéaire des cobords. Bull. Soc. Math. France 111(2) (1983), 147150.CrossRefGoogle Scholar
[18]McDuff, D.. The local behaviour of holomorphic curves in almost complex 4-manifolds. J. Differential Geom. 34(1) (1991), 143164.CrossRefGoogle Scholar
[19]Paternain, G. P.. Geodesic Flows (Progress in Mathematics, 180). Birkhäuser Boston, Boston, MA, 1999.CrossRefGoogle Scholar
[20]Rechtman, A.. Use and disuse of plugs in foliations, PhD Thesis, École Normale Supérieure de Lyon, 2009, http://tel.archives-ouvertes.fr/tel-00361633/fr/.Google Scholar
[21]Schwartzman, S.. Asymptotic cycles. Ann. of Math. (2) 66 (1957), 270284.CrossRefGoogle Scholar
[22]Sikorav, J.-C.. Growth of a primitive of a differential form. Bull. Soc. Math. France 129(2) (2001), 159168.CrossRefGoogle Scholar
[23]Sullivan, D.. A foliation of geodesics is characterized by having no ‘tangent homologies’. J. Pure Appl. Algebra 13(1) (1978), 101104.CrossRefGoogle Scholar
[24]Sullivan, D.. A counterexample to the periodic orbit conjecture. Publ. Math. Inst. Hautes Études Sci. 46 (1976), 514.CrossRefGoogle Scholar
[25]Taubes, C. H.. The Seiberg–Witten equations and the Weinstein conjecture II: more closed integral curves of the Reeb vector field, 2007, arxiv:math/0702366.CrossRefGoogle Scholar
[26]Tischler, D.. On fibering certain foliated manifolds over S 1. Topology 9 (1970), 153154.CrossRefGoogle Scholar
[27]Wadsley, A. W.. Geodesic foliations by circles. J. Differential Geom. 10(4) (1975), 541549.CrossRefGoogle Scholar
[28]Whitney, H.. Complex Analytic Varieties. Addison-Wesley, Reading, MA, 1972.Google Scholar
[29]Wilson, F. W.. On the minimal sets of non-singular vector fields. Ann. of Math. (2) 84 (1966), 529536.CrossRefGoogle Scholar