Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T12:08:03.107Z Has data issue: false hasContentIssue false

Generic super-exponential stability of invariant tori in Hamiltonian systems

Published online by Cambridge University Press:  13 October 2010

ABED BOUNEMOURA*
Affiliation:
Laboratoire Mathématiques d’Orsay, Université Paris-Sud, 91405 Orsay Cedex, France (email: abed.bounemoura@math.u-psud.fr)

Abstract

In this article, we consider solutions that start close to some linearly stable invariant tori in an analytic Hamiltonian system, and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms with a new method for obtaining generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will focus mainly on the neighbourhood of elliptic fixed points, since with our approach the other cases can be treated in a very similar way.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AKN06]Arnold, V. I., Kozlov, V. V. and Neishtadt, A. I.. Mathematical Aspects of Classical and Celestial Mechanics (Encyclopaedia of Mathematical Sciences, 3). Springer, Berlin, 2006, translated from the Russian by E. Khukhro.CrossRefGoogle Scholar
[Arn61]Arnol’d, V. I.. The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case. Sov. Math. Dokl. 2 (1961), 247249.Google Scholar
[Arn63]Arnol’d, V. I.. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys 18(6) (1963), 85191.CrossRefGoogle Scholar
[Bir66]Birkhoff, G. D.. Dynamical Systems. American Mathematical Society, Providence, RI, 1966.Google Scholar
[BN09]Bounemoura, A. and Niederman, L.. Generic Nekhoroshev theory without small divisors. 2009, submitted.Google Scholar
[DG96]Delshams, A. and Gutiérrez, P.. Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system. J. Differential Equations 131 (1996), 277303.CrossRefGoogle Scholar
[DLC83]Douady, R. and Le Calvez, P.. Exemple de point fixe elliptique non topologiquement stable en dimension 4. C. R. Acad. Sci. Paris 296 (1983), 895898.Google Scholar
[Dou88]Douady, R.. Stabilité ou instabilité des points fixes elliptiques. Ann. Sci. École Norm. Sup. 21(1) (1988), 146.CrossRefGoogle Scholar
[FGB98]Fassò, F., Guzzo, M. and Benettin, G.. Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems. Comm. Math. Phys. 197(2) (1998), 347360.Google Scholar
[GDF+89]Giorgilli, A., Delshams, A., Fontich, E., Galgani, L. and Simó, C.. Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differential Equations 77 (1989), 167198.CrossRefGoogle Scholar
[GFB98]Guzzo, M., Fassò, F. and Benettin, G.. On the stability of elliptic equilibria. Math. Phys. Electron. J. 4 (1998), paper no. 1.Google Scholar
[HSY92]Hunt, B. R., Sauer, T. and Yorke, J. A.. Prevalence: a translation-invariant ‘almost every’ on infinite-dimensional spaces. Bull. Amer. Math. Soc. 27 (1992), 217238.CrossRefGoogle Scholar
[JV97]Jorba, À. and Villanueva, J.. On the normal behaviour of partially elliptic lower dimensional tori of Hamiltonian systems. Nonlinearity 10 (1997), 783822.CrossRefGoogle Scholar
[KMV04]Kaloshin, V., Mather, J. N. and Valdinoci, E.. Instability of resonant totally elliptic points of symplectic maps in dimension 4. Astérisque 297 (2004), 79116Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes (II): Volume en l’honneur de Jean-Pierre Ramis. Ed. M. Loday-Richaud.Google Scholar
[KP94]Kuksin, S. and Pöschel, J.. On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications. Seminar on Dynamical Systems. Birkhäuser, Basel, 1994, pp. 96116.CrossRefGoogle Scholar
[LM88]Lochak, P. and Meunier, C.. Multiphase Averaging for Classical Systems, with Applications to Adiabatic Theorems (Applied Mathematical Sciences, 72). Springer, New York, 1988, translated from the French by H. S. Dumas.CrossRefGoogle Scholar
[Loc92]Lochak, P.. Canonical perturbation theory via simultaneous approximation. Russian Math. Surveys 47(6) (1992), 57133.CrossRefGoogle Scholar
[Loc95]Lochak, P.. Stability of Hamiltonian systems over exponentially long times: the near-linear case. Hamiltonian Dynamical Systems: History, Theory, and Applications. Proceedings of the International Conference Held at the University of Cincinnati, March 1992 (The IMA Volumes in Mathematics and its Applications, 63). Eds. Dumas, H. S.et al. Springer, New York, 1995, pp. 221229.CrossRefGoogle Scholar
[MG95]Morbidelli, A. and Giorgilli, A.. Superexponential stability of KAM tori. J. Stat. Phys. 78 (1995), 16071617.CrossRefGoogle Scholar
[MS02]Marco, J.-P. and Sauzin, D.. Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems. Publ. Math. Inst. Hautes Études Sci. 96 (2002), 199275.CrossRefGoogle Scholar
[Nek77]Nekhoroshev, N. N.. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russian Math. Surveys 32(6) (1977), 165.CrossRefGoogle Scholar
[Nie98]Niederman, L.. Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system. Nonlinearity 11(6) (1998), 14651479.CrossRefGoogle Scholar
[Nie07]Niederman, L.. Generic exponential stability of quadratic integrable Hamiltonian systems. Unpublished manuscript, 2007.CrossRefGoogle Scholar
[OY05]Ott, W. and Yorke, J. A.. Prevalence. Bull. Amer. Math. Soc. 42(3) (2005), 263290.CrossRefGoogle Scholar
[PM03]Pérez-Marco, R.. Convergence or generic divergence of the Birkhoff normal form. Ann. of Math. (2) 157(2) (2003), 557574.CrossRefGoogle Scholar
[Pop00]Popov, G.. Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms. Ann. Henri Poincaré 1(2) (2000), 223248.CrossRefGoogle Scholar
[Pop04]Popov, G.. KAM theorem for Gevrey Hamiltonians. Ergod. Th. & Dynam. Sys. 24(5) (2004), 17531786.CrossRefGoogle Scholar
[Pös82]Pöschel, J.. Integrability of Hamiltonian systems on Cantor sets. Comm. Pure Appl. Math. 35 (1982), 653696.CrossRefGoogle Scholar
[Pös93]Pöschel, J.. Nekhoroshev estimates for quasi-convex Hamiltonian systems. Math. Z. 213 (1993), 187216.CrossRefGoogle Scholar
[Pös99]Pöschel, J.. On Nekhoroshev’s estimate at an elliptic equilibrium. Int. Math. Res. Not. 4 (1999), 203215.CrossRefGoogle Scholar
[Pös01]Pöschel, J.. A lecture on the classical KAM theory. Smooth Ergodic Theory and its Applications (Seattle, WA, 1999) (Proceedings of Symposia in Pure Mathematics, 69). Eds. Katok, Anatoleet al. American Mathematical Society, Providence, RI, 2001, pp. 707732.CrossRefGoogle Scholar
[PT97]Pronin, A. V. and Treschev, D. V.. On the inclusion of analytic maps into analytic flows. Regul. Chaotic Dyn. 2(2) (1997), 1424.Google Scholar
[PW94]Perry, A. D. and Wiggins, S.. KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Phys. D 71 (1994), 102121.CrossRefGoogle Scholar
[YC04]Yomdin, Y. and Comte, G.. Tame Geometry with Application in Smooth Analysis (Lecture Notes in Mathematics, 1834). Springer, Berlin, 2004.CrossRefGoogle Scholar
[Yom83]Yomdin, Y.. The geometry of critical and near-critical values of differentiable mappings. Math. Ann. 264 (1983), 495515.CrossRefGoogle Scholar