Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:50:24.193Z Has data issue: false hasContentIssue false

On properties of the vertical rotation interval for twist mappings

Published online by Cambridge University Press:  03 March 2005

SALVADOR ADDAS-ZANATA
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil (e-mail: sazanata@ime.usp.br)

Abstract

In this paper we consider twist mappings of the torus, $\overline{T}:{\rm T^2\rightarrow T^2}$, and their vertical rotation intervals $\rho _V(T)=[\rho _V^{-},\rho _V^{+}]$, which are closed intervals such that for any $\omega \in\, ]\rho _V^{-},\rho _V^{+}[$ there exists a compact $\overline{T}$-invariant set $\overline{Q}_\omega $ with $\rho _V(\overline{x})=\omega$ for any $\overline{x}\in \overline{Q}_\omega $, where $\rho _V(\overline{x})$ is the vertical rotation number of $\overline{x}$. In the case when $\omega $ is a rational number, $\overline{Q}_\omega $ is a periodic orbit. Here we analyze how $\rho _V^{-}$ and $\rho _V^{+}$ behave as we perturb $\overline{T}$ and which dynamical properties for $\overline{T}$ can be obtained from their values.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)