Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T09:50:33.747Z Has data issue: false hasContentIssue false

On the differentiability of hairs for Zorich maps

Published online by Cambridge University Press:  07 November 2017

PATRICK COMDÜHR*
Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany email comduehr@math.uni-kiel.de

Abstract

Devaney and Krych showed that, for the exponential family $\unicode[STIX]{x1D706}e^{z}$, where $0\,<\,\unicode[STIX]{x1D706}\,<\,1/e$, the Julia set consists of uncountably many pairwise disjoint simple curves tending to $\infty$. Viana proved that these curves are smooth. In this article, we consider quasiregular counterparts of the exponential map, the so-called Zorich maps, and generalize Viana’s result to these maps.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barański, K.. Trees and hairs for some hyperbolic entire maps of finite order. Math. Z. 257(1) (2007), 3359.Google Scholar
Beardon, A. F.. Iteration of Rational Functions: Complex Analytic Dynamical Systems (Graduate Texts in Mathematics, 132) . Springer, New York, 1991.Google Scholar
Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151188.Google Scholar
Bergweiler, W.. Karpińska’s paradox in dimension three. Duke Math. J. 154 (2010), 599630.Google Scholar
Devaney, R. L., Goldberg, L. R. and Hubbard, J. H.. A dynamical approximation to the exponential map by polynomials. Preprint, 1986, MSRI Berkeley.Google Scholar
Devaney, R. L. and Krych, M.. Dynamics of exp(z). Ergod. Th. & Dynam. Sys. 4 (1984), 3552.Google Scholar
Devaney, R. L. and Tangerman, F.. Dynamics of entire functions near the essential singularity. Ergod. Th. & Dynam. Sys. 6(4) (1986), 489503.Google Scholar
Iwaniec, T. and Martin, G.. Geometric Function Theory and Non-linear Analysis (Oxford Mathematics Monographs) . Oxford University Press, New York, 2001.Google Scholar
Karpińska, B.. Hausdorff dimension of the hairs without endpoints for 𝜆expz . C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 10391044.Google Scholar
McMullen, C.. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1987), 329342.Google Scholar
Milnor, J.. Dynamics in One Complex Variable (Annals of Mathematical Studies, 160) , 3rd edn. Princeton University Press, Princeton, NJ, 2006.Google Scholar
Nicks, D. and Sixsmith, D. J.. Periodic domains of quasiregularmaps. Ergod. Th. & Dynam. Sys., doi:10.1017/etds.2016.116, published online 14 March 2017.Google Scholar
Rempe, L.. Dynamics of exponential maps. PhD Thesis, Christian-Albrechts-Universiät Kiel, 2003.Google Scholar
Rempe, L.. Topological dynamics of exponential maps on their escaping sets. Ergod. Th. & Dynam. Sys. 26 (2006), 19391975.Google Scholar
Rickman, S.. Quasiregular Mappings (Ergebnisse der Mathematik und ihrer Grenzgebiete, 26(3) [Results in Mathematics and Related Areas (3)]) . Springer, Berlin, 1993.Google Scholar
Rottenfusser, G., Rückert, J., Rempe, L. and Schleicher, D.. Dynamic rays of entire functions. Ann. of Math. (2) 173(1) (2011), 77125.Google Scholar
Schleicher, D.. Attracting dynamics of exponential maps. Ann. Acad. Sci. Fenn. Math. 28 (2003), 334.Google Scholar
Steinmetz, N.. Rational Iteration: Complex Analytic Dynamical Systems (de Gruyter Studies in Mathematics A, 16) . de Gruyter, Berlin, 1993.Google Scholar
Schleicher, D. and Zimmer, J.. Escaping points of exponential maps. J. Lond. Math. Soc. (2) 67(2) (2003), 380400.Google Scholar
Viana da Silva, M.. The differentiability of the hairs of exp(Z). Proc. Amer. Math. Soc. 103(4) (1988), 11791184.Google Scholar
Zorich, V. A.. A theorem of M. A. Lavrent’ev on quasiconformal space maps. Mat. Sb. (N.S.) 74 (116(3) (1967), 417433 (in Russian); Engl. Transl. Math. USSR Sb. 3(3) (1967), 389–403.Google Scholar