Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T05:08:49.580Z Has data issue: false hasContentIssue false

On the fixed points of the Ruelle operator

Published online by Cambridge University Press:  10 January 2020

CARLOS CABRERA
Affiliation:
Universidad Nacional Autónoma de Mexico, Unidad Cuernavaca del Instituto de Matemáticas, Av. Universidad S/N. C.U., Cuernavaca, Morelos 62210, Mexico email carloscabrerao@im.unam.mx, makienko@im.unam.mx
PETER MAKIENKO
Affiliation:
Universidad Nacional Autónoma de Mexico, Unidad Cuernavaca del Instituto de Matemáticas, Av. Universidad S/N. C.U., Cuernavaca, Morelos 62210, Mexico email carloscabrerao@im.unam.mx, makienko@im.unam.mx

Abstract

We discuss the relation between the existence of fixed points of the Ruelle operator acting on different Banach spaces, and Sullivan’s conjecture in holomorphic dynamics.

Type
Original Article
Copyright
© Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50) . American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
Bonet, J. and Wolf, E.. A note on weighted Banach spaces of holomorphic functions. Arch. Math. (Basel) 81(6) (2003), 650654.10.1007/s00013-003-0568-8CrossRefGoogle Scholar
Cabrera, C. and Makienko, P.. On decomposable rational maps. Conform. Geom. Dyn. 15 (2011), 210218.Google Scholar
Cabrera, C. and Makienko, P.. On hyperbolic metric and invariant Beltrami differentials for rational maps. J. Geom. Anal. 28(3) (2018), 23462360.10.1007/s12220-017-9906-0CrossRefGoogle Scholar
Douady, A. and Hubbard, J. H.. A proof of Thurston’s topological characterization of rational functions. Acta Math. 171 (1993), 263297.10.1007/BF02392534CrossRefGoogle Scholar
Dunford, N. and Schwartz, J. T.. Linear Operators I: General Theory. John Wiley & Sons, New York, 1988, reprint of the 1958 original.Google Scholar
Fonf, V., Lin, M. and Rubinov, A.. On the uniform ergodic theorem in Banach spaces that do not contain duals. Studia Math. 121(1) (1996), 6785.Google Scholar
Gamelin, T. W.. Uniform Algebras. Chelsea Publishing Co, New York, 1984.Google Scholar
Gardiner, F. and Lakic, N.. Quasiconformal Teichmüller Theory (Mathematical Surveys and Monographs, 76) . American Mathematical Society, Providence, RI, 2000.Google Scholar
Harmand, P., Werner, D. and Werner, W.. M-ideals in Banach Spaces and Banach Algebras (Lecture Notes in Mathematics, 1547) . Springer, Berlin, 1993.10.1007/BFb0084355CrossRefGoogle Scholar
Kra, I.. Automorphic Forms and Kleinian Groups (Mathematics Lecture Note Series) . W. A. Benjamin, Inc., Reading, MA, 1972.Google Scholar
Krengel, U.. Ergodic Theorems (de Gruyter Studies in Mathematics, 6) . Walter de Gruyter & Co., Berlin, 1985.Google Scholar
Lotz, H. P.. Uniform convergence of operators on L and similar spaces. Math. Z. 190(2) (1985), 207220.10.1007/BF01160459CrossRefGoogle Scholar
Lyubich, M.. Dynamics of the rational transforms; the topological picture. Uspekhi Mat. Nauk 41(4) (1986), 3595.Google Scholar
Lyubich, M. Yu.. Typical behavior of trajectories of the rational mapping of a sphere. Dokl. Akad. Nauk SSSR 268(1) (1983), 2932.Google Scholar
Mañé, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4) 16 (1983), 193217.Google Scholar
Makienko, P.. Remarks on the Ruelle operator and the invariant line fields problem: II. Ergod. Th. & Dynam. Sys. 25(05) (2005), 15611581.10.1017/S0143385705000155CrossRefGoogle Scholar
McMullen, C.. Complex Dynamics and Renormalization (Annals of Mathematics Studies, 135) . Princeton University Press, Princeton, NJ, 1994.Google Scholar
McMullen, C. and Sullivan, D.. Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135(2) (1998), 351395.CrossRefGoogle Scholar
Milnor, J.. On Lattès maps. Dynamics on the Riemann Sphere. Eds. Hjorth, P. and Petersen, C. L.. European Mathematical Society, Zürich, 2006, pp. 943.10.4171/011-1/1CrossRefGoogle Scholar
Rees, M.. Positive measure sets of ergodic rational maps. Ann. Sci. Éc. Norm. Supér. (4) 19(3) (1986), 383407.CrossRefGoogle Scholar
Ruelle, D.. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34(3) (1976), 231242.Google Scholar
Tao, T.. An Introduction to Measure Theory (Graduate Studies in Mathematics, 126) . American Mathematical Society, Providence, RI, 2011.10.1090/gsm/126CrossRefGoogle Scholar
Zdunik, A.. Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent. Math. 99(3) (1990), 627649.CrossRefGoogle Scholar