No CrossRef data available.
Article contents
Smale flows on $\mathbb{S}^{2}\times \mathbb{S}^{1}$
Published online by Cambridge University Press: 13 April 2015
Abstract
In this paper, we use abstract Lyapunov graphs as a combinatorial tool to obtain a complete classification of Smale flows on $\mathbb{S}^{2}\times \mathbb{S}^{1}$. This classification gives necessary and sufficient conditions that must be satisfied by an (abstract) Lyapunov graph in order for it to be associated to a Smale flow on $\mathbb{S}^{2}\times \mathbb{S}^{1}$.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2015
References
Béguin, F. and Bonatti, Ch.. Flots de Smale en dimension 3: présentations finies de voisinages invariants d’ensembles selles. Topology 41(1) (2002), 119–162.CrossRefGoogle Scholar
Bonatti, Ch. and Grines, V.. Knots as topological invariants for gradient-like diffeomorphisms of the sphere S 3. J. Dyn. Control Syst. 6(4) (2000), 579–602.CrossRefGoogle Scholar
Bowen, R.. One-dimensional hyperbolic sets for flows. J. Differential Equations 12(1) (1972), 173–179.CrossRefGoogle Scholar
Bowen, R. and Franks, J.. Homology for zero-dimensional nonwandering sets. Ann. of Math. (2) 106(1) (1977), 73–92.CrossRefGoogle Scholar
Conley, C. C.. Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence, RI, 1978.CrossRefGoogle Scholar
Cruz, R. and de Rezende, K.. Cycle rank of Lyapunov graphs and the genera of manifolds. Proc. Amer. Math. Soc. 126(12) (1998), 3715–3720.CrossRefGoogle Scholar
de Rezende, K.. Smale flows on the three-sphere. Trans. Amer. Math. Soc. 303(1) (1987), 283–310.CrossRefGoogle Scholar
de Rezende, K.. Gradient-like flows on 3-manifolds. Ergod. Th. & Dynam. Sys. 13(3) (1993), 557–580.CrossRefGoogle Scholar
Franks, J.. Homology and Dynamical Systems. American Mathematical Society, Providence, RI, 1982.CrossRefGoogle Scholar
Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. (N.S.) 73(6) (1967), 747–817.CrossRefGoogle Scholar
Wilson, W.. Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 (1969), 413–428.CrossRefGoogle Scholar
Yu, B.. Lyapunov graphs of nonsingular Smale flows on S 1 × S 2. Trans. Amer. Math. Soc. 365(2) (2012), 767–783.CrossRefGoogle Scholar