Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-08T07:15:44.217Z Has data issue: false hasContentIssue false

The type semigroup, comparison, and almost finiteness for ample groupoids

Published online by Cambridge University Press:  27 October 2021

PERE ARA
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 01893 Cerdanyola del Vallès (Barcelona), Spain Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 01893 Cerdanyola del Vallès (Barcelona), Spain (e-mail: para@mat.uab.cat)
CHRISTIAN BÖNICKE*
Affiliation:
School of Mathematics and Statistics, University of Glasgow, University Gardens, Glasgow, G12 8QQ, UK
JOAN BOSA
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 01893 Bellaterra (Barcelona), Spain (e-mail: jbosa@mat.uab.cat)
KANG LI
Affiliation:
Institute of Mathematics of the Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland (e-mail: kli@impan.pl)

Abstract

We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperforated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ara, P., Bönicke, C., Bosa, J. and Li, K.. Strict comparison for ${C}^{\ast }$ -algebras arising from almost finite groupoids. Banach J. Math. Anal. 14 (2020), 16921710.CrossRefGoogle Scholar
Ara, P., Bosa, J., Pardo, E. and Sims, A.. The groupoids of adaptable separated graphs and their type semigroup. Int. Math. Res. Not. IMRN, 2021(20) (2021), 1544415496.Google Scholar
Ara, P. and Exel, R.. Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions. Adv. Math. 252 (2014), 748804.Google Scholar
Ara, P., Li, K., Lledó, F. and Wu, J.. Amenability and uniform Roe algebras. J. Math. Anal. Appl. 459(2) (2018), 686716.CrossRefGoogle Scholar
Ara, P., Li, K., Lledó, F. and Wu, J.. Amenability of coarse spaces and $K$ -algebras. Bull. Math. Sci. 8(2) (2018), 257306.CrossRefGoogle Scholar
Ara, P. and Pardo, E.. Refinement monoids with weak comparability and applications to regular rings and ${C}^{\ast }$ -algebras. Proc. Amer. Math. Soc. 124(3) (1996), 715720.Google Scholar
Aranda Pino, G., Goodearl, K. R., Perera, F. and Molina, M. S.. Non-simple purely infinite rings. Amer. J. Math. 132(3) (2010), 563610.CrossRefGoogle Scholar
Block, J. and Weinberger, S.. Aperiodic tilings, positive scalar curvature and amenability of spaces. J. Amer. Math. Soc. 5(4) (1992), 907918.CrossRefGoogle Scholar
Bönicke, C. and Li, K.. Ideal structure and pure infiniteness of ample groupoid ${C}^{\ast }$ -algebras. Ergod. Th. & Dynam. Sys. 40(1) (2020), 3463.CrossRefGoogle Scholar
Carlsen, T. M., Ruiz, E. and Sims, A.. Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph ${C}^{\ast }$ -algebras and Leavitt path algebras. Proc. Amer. Math. Soc. 145(4) (2017), 15811592.CrossRefGoogle Scholar
Deninger, C. and Schmidt, K.. Expansive algebraic actions of discrete residually finite amenable groups and their entropy. Ergod. Th. & Dynam. Sys. 27(3) (2007), 769786.CrossRefGoogle Scholar
Downarowicz, T., Huczek, D. and Zhang, G.. Tilings of amenable groups. J. Reine Angew. Math. 747 (2019), 277298.CrossRefGoogle Scholar
Downarowicz, T. and Zhang, G.. The comparison property of amenable groups. Preprint, 2020, arXiv:1712.05129.Google Scholar
Elek, G.. Qualitative graph limit theory. Cantor dynamical systems and constant-time distributed algorithms. Preprint, 2019, arXiv:1812.07511.Google Scholar
Farsi, C., Kumjian, A., Pask, D. and Sims, A.. Ample groupoids: equivalence, homology, and Matui’s HK conjecture. Münster J. Math. 12(2) (2019), 411451.Google Scholar
Finn-Sell, M. and Wright, N.. Spaces of graphs, boundary groupoids and the coarse Baum–Connes conjecture. Adv. Math. 259 (2014), 306338.CrossRefGoogle Scholar
Folland, G. B.. Real Analysis: Modern Techniques and Their Applications (Pure and Applied Mathematics). John Wiley & Sons, Inc., New York, 1984.Google Scholar
Gentimis, T.. Asymptotic dimension of finitely presented groups. Proc. Amer. Math. Soc. 136(12) (2008), 41034110.CrossRefGoogle Scholar
Giordano, T., Kerr, D., Phillips, N. C. and Toms, A.. Crossed Products of ${C}^{\ast }$ -Algebras, Topological Dynamics, and Classification (Advanced Courses in Mathematics, CRM Barcelona). Ed. F. Perera. Birkhäuser/Springer, Cham, 2018.CrossRefGoogle Scholar
Guentner, E., Willett, R. and Yu, G.. Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and ${C}^{\ast }$ -algebras. Math. Ann. 367(1–2) (2017), 785829.CrossRefGoogle Scholar
Kerr, D.. Dimension, comparison, and almost finiteness. J. Eur. Math. Soc. (JEMS) 22(11) (2020), 36973745.Google Scholar
Kerr, D. and Szabó, G.. Almost finiteness and the small boundary property. Comm. Math. Phys. 374(1) (2020), 131.CrossRefGoogle Scholar
Lawson, M. V. and Vdovina, A.. The universal Boolean inverse semigroup presented by the abstract Cuntz–Krieger relations. J. Noncommut. Geom. 15(1) (2021), 279304.CrossRefGoogle Scholar
Li, X.. Partial transformation groupoids attached to graphs and semigroups. Int. Math. Res. Not. IMRN 2017(17) (2017), 52335259.Google Scholar
Li, K. and Willett, R.. Low-dimensional properties of uniform Roe algebras. J. Lond. Math. Soc. (2) 97(1) (2018), 98124.CrossRefGoogle Scholar
Ma, X.. Comparison and pure infiniteness of crossed products. Trans. Amer. Math. Soc. 372(10) (2019), 74977520.Google Scholar
Ma, X.. Purely infinite locally compact Hausdorff étale groupoids and their ${C}^{\ast }$ -algebras. Int. Math. Res. Not. IMRN, to appear.Google Scholar
Ma, X. and Wu, J.. Almost elementariness and fiberwise amenability for étale groupoids. Preprint, 2020, arXiv:2011.01182.Google Scholar
Matui, H.. Homology and topological full groups of étale groupoids on totally disconnected spaces. Proc. Lond. Math. Soc. (3) 104(1) (2012), 2756.Google Scholar
Ortega, E., Perera, F. and Rørdam, M.. The corona factorization property and refinement monoids. Trans. Amer. Math. Soc. 363(9) (2011), 45054525.CrossRefGoogle Scholar
Ortega, E., Perera, F. and Rørdam, M.. The corona factorization property, stability, and the Cuntz semigroup of a ${C}^{\ast }$ -algebra. Int. Math. Res. Not. IMRN 2012(1) (2012), 3466.CrossRefGoogle Scholar
Rainone, T. and Sims, A.. A dichotomy for groupoid ${C}^{\ast }$ -algebras. Ergod. Th. & Dynam. Sys. 40(2) (2020), 521563.CrossRefGoogle Scholar
Renault, J.. A Groupoid Approach to ${C}^{\ast }$ -Algebras (Lecture Notes in Mathematics, 793). Springer, Berlin, 1980.CrossRefGoogle Scholar
Rørdam, M.. The stable and the real rank of $\mathbf{\mathcal{Z}}$ -absorbing ${C}^{\ast }$ -algebras. Internat. J. Math. 15(10) (2004), 10651084.CrossRefGoogle Scholar
Rørdam, M. and Sierakowski, A.. Purely infinite ${C}^{\ast }$ -algebras arising from crossed products. Ergod. Th. & Dynam. Sys. 32(1) (2012), 273293.CrossRefGoogle Scholar
Rudin, W.. Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York, 1987.Google Scholar
Skandalis, G., Tu, J.-L. and Yu, G.. The coarse Baum–Connes conjecture and groupoids. Topology 41(4) (2002), 807834.CrossRefGoogle Scholar
Špakula, J. and Willett, R.. A metric approach to limit operators. Trans. Amer. Math. Soc. 369(1) (2017), 263308.CrossRefGoogle Scholar
Suzuki, Y.. Almost finiteness for general étale groupoids and its applications to stable rank of crossed products. Int. Math. Res. Not. IMRN 19 (2020), 60076041.CrossRefGoogle Scholar
Szabó, G., Wu, J. and Zacharias, J.. Rokhlin dimension for actions of residually finite groups. Ergod. Th. & Dynam. Sys. 39(8) (2019), 22482304.CrossRefGoogle Scholar
Tu, J.-L.. Remarks on Yu’s ‘property A’ for discrete metric spaces and groups. Bull. Soc. Math. France 129(1) (2001), 115139.CrossRefGoogle Scholar
Wagon, S.. The Banach–Tarski Paradox, 1st edn. Cambridge University Press, Cambridge, 1985.CrossRefGoogle Scholar
Wehrung, F.. Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups (Lecture Notes in Mathematics, 2188). Springer, Cham, 2017.CrossRefGoogle Scholar
Weiss, B.. Monotileable amenable groups. Topology, Ergodic Theory, Real Algebraic Geometry (American Mathematical Society Translations: Series 2, 202). American Mathematical Society, Providence, RI, 2001, pp. 257262.Google Scholar
Willett, R.. Some notes on property A. Limits of Graphs in Group Theory and Computer Science. EPFL Press, Lausanne, 2009, pp. 191281.Google Scholar