Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T19:34:23.375Z Has data issue: false hasContentIssue false

Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory

Published online by Cambridge University Press:  31 July 2009

Guillaume Carlier
Affiliation:
Université Paris Dauphine, CEREMADE, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, France. carlier@ceremade.dauphine.fr ; tahraoui@ceremade.dauphine.fr
Rabah Tahraoui
Affiliation:
Université Paris Dauphine, CEREMADE, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, France. carlier@ceremade.dauphine.fr ; tahraoui@ceremade.dauphine.fr
Get access

Abstract

This article is devoted to the optimal control of state equations with memory of the form:

$\dot{x}(t)=F(x(t),u(t), \int_0^{+\infty} A(s) x(t-s) {\rm d}s), \; t>0,$

with initial conditions $x(0)=x, \; x(-s)=z(s), s>0$.

Denoting by $y_{x, z, u}$ the solution of the previous Cauchy problem and:

$ v(x,z):=\inf_{u\in V} \lbrace \int_0^{+\infty} {\rm e}^{-\lambda s } L(y_{x,z,u}(s), u(s)){\rm d}s\rbrace $

where V is a class of admissible controls, we prove that v is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form:

$ \lambda v(x,z)+H(x,z,\nabla_x v(x,z))+\langle D_z v(x,z), \dot{z} \rangle=0 $

in the sense of the theory of viscosity solutions in infinite-dimensions of Crandall and Lions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C.T.H. Baker, G.A. Bocharov and F.A. Rihan, A Report on the Use of Delay Differential Equations in Numerical Modelling in the Biosciences. Technical report, Manchester Centre for Computational Mathematics, UK (1999).
A. Bensoussan, G. Da Prato, M. Delfour and S.K. Mitter, Representation and control of infinite dimensional systems. Second Edition, Birkhäuser (2007).
M. Bardi and I.C. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997).
G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathematics and Applications 17. Springer-Verlag, Paris (1994).
Boucekkine, R., Licandro, O., Puch, L. and del Rio, F., Vintage capital and the dynamics of the AK model. J. Econ. Theory 120 (2005) 3972. CrossRef
H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983).
G. Carlier and R. Tahraoui, On some optimal control problems governed by a state equation with memory. ESAIM: COCV 14 (2008) 725–743.
Crandall, M. and Lions, P.-L., Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal. 62 (1985) 379396. CrossRef
Crandall, M. and Lions, P.-L., Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal. 65 (1986) 368405. CrossRef
Crandall, M. and Lions, P.-L., Hamilton-Jacobi equations in infinite dimensions. III. J. Funct. Anal. 68 (1986) 214247. CrossRef
Crandall, M. and Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal. 90 (1990) 237283. CrossRef
Crandall, M. and Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions. J. Funct. Anal. 97 (1991) 417465. CrossRef
M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. VI. Nonlinear A and Tataru's method refined, in Evolution equations, control theory, and biomathematics, Lect. Notes Pure Appl. Math. 155, Dekker, New York (1994) 51–89.
Elsanosi, I., Øksendal, B. and Sulem, A., Some solvable stochastic control problems with delay. Stochast. Stochast. Rep. 71 (2000) 6989. CrossRef
Fabbri, G., Viscosity solutions to delay differential equations in demo-economy. Math. Popul. Stud. 15 (2008) 2754. CrossRef
Fabbri, G., Faggian, S. and Gozzi, F., On dynamic programming in economic models governed by DDEs. Math. Popul. Stud. 15 (2008) 267290. CrossRef
Faggian, S. and Gozzi, F., On the dynamic programming approach for optimal control problems of PDE's with age structure. Math. Popul. Stud. 11 (2004) 233270. CrossRef
F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, in Stochastic partial differential equations and applications VII, Chapman & Hall, Boca Raton, Lect. Notes Pure Appl. Math. 245 (2006) 133–148.
V.B. Kolmanovskii and L.E. Shaikhet, Control of systems with aftereffect, Translations of Mathematical Monographs. American Mathematical Society, Providence, USA (1996).
Larssen, B. and Risebro, N.H., When are HJB-equations in stochastic control of delay systems finite dimensional? Stochastic Anal. Appl. 21 (2003) 643671. CrossRef
Samassi, L. and Tahraoui, R., Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés ? C. R. Math. Acad. Sci. Paris 338 (2004) 611616. CrossRef
Samassi, L. and Tahraoui, R., How to state necessary optimality conditions for control problems with deviating arguments? ESAIM: COCV 14 (2008) 381409. CrossRef