Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-14T04:51:03.636Z Has data issue: false hasContentIssue false

The geometrical quantity in damped wave equations on a square

Published online by Cambridge University Press:  11 October 2006

Pascal Hébrard
Affiliation:
Institut Élie Cartan, Université de Nancy 1, BP 239 54506 Vandœuvre-lès-Nancy Cedex, France; pascal_hebrard@ds-fr.com; humbert@iecn.u-nancy.fr
Emmanuel Humbert
Affiliation:
Institut Élie Cartan, Université de Nancy 1, BP 239 54506 Vandœuvre-lès-Nancy Cedex, France; pascal_hebrard@ds-fr.com; humbert@iecn.u-nancy.fr
Get access

Abstract

The energy in a square membrane Ω subject to constant viscous damping on a subset $\omega\subset \Omega$ decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate $\tau(\omega)$ of this decay satisfies $\tau(\omega)= 2 \min( -\mu(\omega), g(\omega))$ (see Lebeau [Math. Phys. Stud.19 (1996) 73–109]). Here $\mu(\omega)$ denotes the spectral abscissa of the damped wave equation operator and $g(\omega)$ is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion of a mass-point in Ω subject to elastic reflections on the boundary. These reflections obey the law of geometrical optics. The geometrical quantity $g(\omega)$ is then defined as the upper limit (large time asymptotics) of the average trajectory length. We give here an algorithm to compute explicitly $g(\omega)$ when ω is a finite union of squares.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asch, M. and Lebeau, G., The spectrum of the damped wave operator for a bounded domain in $\mathbb{R}^2$ . Experiment. Math. 12 (2003) 227241. CrossRef
Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 10241065. CrossRef
Benaddi, A. and Rao, B., Energy decay rate of wave equations with infinite damping. J. Diff. Equ. 161 (2000) 337357. CrossRef
Carlos, C. and Cox, S., Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001) 17481755.
A. Chambert-Loir, S. Fermigier and V. Maillot, Exercices de mathématiques pour l'agrégation. Analyse I. Masson (1995).
Cox, S. and Zuazua, E., The rate at which energy decays in a damping string. Comm. Partial Diff. Equ. 19 (1994) 213243. CrossRef
P. Hébrard, Étude de la géométrie optimale des zones de contrôle dans des problèmes de stabilisation. Ph.D. Thesis, University of Nancy 1 (2002).
Hébrard, P. and Henrot, A., Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 119209. CrossRef
G. Lebeau, Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics. Kluwer Acad. Publ., Math. Phys. Stud. 19 (1996) 73–109.
Rauch, J. and Taylor, M., Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28 (1975) 501523. CrossRef
Sjostrand, J., Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Sci. 36 (2000) 573611. CrossRef
S. Tabachnikov, Billiards mathématiques. SMF collection Panoramas et synthèses (1995).
Zuazua, E., Exponential decay for the semilinear wave equation with localized damping. Comm. Partial Equ. 15 (1990) 205235.