Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T12:40:31.127Z Has data issue: false hasContentIssue false

GO++: A modular Lagrangian/Eulerian software for Hamilton Jacobi equations of geometric optics type

Published online by Cambridge University Press:  15 October 2002

Jean-David Benamou
Affiliation:
INRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France. Jean-David.Benamou@inria.fr.
Philippe Hoch
Affiliation:
INRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France. Jean-David.Benamou@inria.fr.
Get access

Abstract

We describe both the classical Lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R. and Benamou, J.-D., Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multi-valued travel-time field in the marmousi model. Geophysics 64 (1999) 230-239. CrossRef
V.I. Arnol'd, Mathematical methods of Classical Mechanics. Springer-Verlag (1978).
G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag (1994).
Benamou, J.-D., Big ray tracing: Multi-valued travel time field computation using viscosity solutions of the eikonal equation. J. Comput. Phys. 128 (1996) 463-474. CrossRef
J.-D. Benamou, Direct solution of multi-valued phase-space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999).
J.-D. Benamou and P. Hoch, GO++: A modular Lagrangian/Eulerian software for Hamilton-Jacobi equations of Geometric Optics type. INRIA Tech. Report RR.
Brenier, Y. and Corrias, L., A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 169-190. CrossRef
Crandall, M.G. and Lions, P.L., Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. CrossRef
Duistermaat, J.J., Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27 (1974) 207-281. CrossRef
Engquist, B., Fatemi, E. and Osher, S., Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comput. Phys. 120 (1995) 145-155.
B. Engquist and O. Runborg, Multi-phase computation in geometrical optics. Tech report, Nada KTH (1995).
Izumiya, S., The theory of Legendrian unfoldings and first order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 517-532. CrossRef
Lambare, G., Lucio, P. and Hanyga, A., Two dimensional multi-valued traveltime and amplitude maps by uniform sampling of a ray field. Geophys. J. Int 125 (1996) 584-598. CrossRef
B. Merryman S. Ruuth and S.J. Osher, A fixed grid method for capturing the motion of self-intersecting interfaces and related PDEs. Preprint (1999).
Osher, S.J. and Shu, C.W., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 83 (1989) 32-78.
Steinhoff, J., Fang, M. and Wang, L., A new eulerian method for the computation of propagating short acoustic and electromagnetic pulses. J. Comput. Phys. 157 (2000) 683-706. CrossRef
W. Symes, A slowness matching algorithm for multiple traveltimes. TRIP report (1996).
Vinje, V., Iversen, E. and Gjoystdal, H., Traveltime and amplitude estimation using wavefront construction. Geophysics 58 (1993) 1157-1166. CrossRef
L.C. Young, Lecture on the Calculus of Variation and Optimal Control Theory. Saunders, Philadelphia (1969).