Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T17:34:31.879Z Has data issue: false hasContentIssue false

Numerical simulation of blood flows through a porous interface

Published online by Cambridge University Press:  12 August 2008

Miguel A. Fernández
Affiliation:
INRIA Paris-Rocquencourt, BP 105, 78153 Le Chesnay, France. Miguel.Fernandez@inria.fr; Jean-Frederic.Gerbeau@inria.fr
Jean-Frédéric Gerbeau
Affiliation:
INRIA Paris-Rocquencourt, BP 105, 78153 Le Chesnay, France. Miguel.Fernandez@inria.fr; Jean-Frederic.Gerbeau@inria.fr
Vincent Martin
Affiliation:
University of Technology of Compiègne, LMAC, GI, Royallieu, BP 20529, 60205 Compiègne, France. Vincent.Martin@utc.fr
Get access

Abstract

We propose a model for a medical device, called a stent, designed for the treatment of cerebral aneurysms. The stent consists of a grid, immersed in the blood flow and located at the inlet of the aneurysm. It aims at promoting a clot within the aneurysm. The blood flow is modelled by the incompressible Navier-Stokes equations and the stent by a dissipative surface term. We propose a stabilized finite element method for this model and we analyse its convergence in the case of the Stokes equations. We present numerical results for academical test cases, and on a realistic aneurysm obtained from medical imaging.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, G., Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113 (1991) 261298. CrossRef
Berry, J.L., Santamarina, A., Moore, J.E. Jr., Roychowdhury, S. and Routh, W.D., Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28 (2000) 386398. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin (1991).
A. Brillard, Asymptotic flow of a viscous and incompressible fluid through a plane sieve, in Progress in partial differential equations: calculus of variations, applications (Pont-à-Mousson, 1991), Pitman Res. Notes Math. Ser. 267, Longman Sci. Tech., Harlow (1992) 158–172.
Burman, E. and Hansbo, P., Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 23932410. CrossRef
D. Chapelle and K.J. Bathe, The finite element analysis of shell – Fundamentals. Springer-Verlag (2004).
P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(R-2) (1975) 77–84.
Codina, R. and Blasco, J., A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Methods Appl. Mech. Engrg. 143 (1997) 373391. CrossRef
Conca, C., Étude d'un fluide traversant une paroi perforée, I. Comportement limite près de la paroi. J. Math. Pures Appl. 66 (1987) 143.
Conca, C., Étude d'un fluide traversant une paroi perforée, II. Comportement limite loin de la paroi. J. Math. Pures Appl. 66 (1987) 4570.
Conca, C. and Sepúlveda, M., Numerical results in the Stokes sieve problem. Rev. Internac. Métod. Numér. Cálc. Diseñ. Ingr. 5 (1989) 435452.
A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004).
Formaggia, L., Gerbeau, J.-F., Nobile, F. and Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg. 191 (2001) 561582. CrossRef
P. Frey, Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, INRIA, Rocquencourt, France, Nov. (2001).
P. Frey, Medit: An interactive mesh visualisation software. Technical report 0253, INRIA, Rocquencourt, France, Dec. (2001).
Gerbeau, J.-F. and Vidrascu, M., A quasi-Newton algorithm based on a reduced model for fluid structure problems in blood flows. ESAIM: M2AN 37 (2003) 631647. CrossRef
Gerbeau, J.-F., Vidrascu, M. and Frey, P., Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comput. Struct. 83 (2005) 155165. CrossRef
V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations – Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986).
Hughes, T.J.R., Franca, L.P. and Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comp. Meth. App. Mech. Eng. 59 (1986) 8599. CrossRef
A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Handbook of Numerical Analysis XII, North-Holland, Amsterdam (2004) 3–127.
Salmon, S., Thiriet, M. and Gerbeau, J.-F., Medical image-based computational model of pulsatile flow in saccular aneurisms. ESAIM: M2AN 37 (2003) 663679. CrossRef
E. Sánchez-Palencia, Problèmes mathématiques liés à l'écoulement d'un fluide visqueux à travers une grille, in Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math. 125, Pitman, Boston, USA (1985) 126–138.
L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190) (1990) 483–493.
Steinman, D.A., Milner, J.S., Norley, C.J., Lownie, S.P. and Holdsworth, D.W., Image-based computational simulation of flow dynamics int a giant intracranial aneurysms. Am. J. Neuroradiol. 24 (2003) 559566.
Stuhne, G.R. and Steinman, D.A., Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126 (2004) 382387. CrossRef
V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics 25. Springer-Verlag, Berlin, second edition (2006).
Tobiska, L. and Verfurth, V., Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107127. CrossRef
Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E. and Taylor, C.A., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195 (2006) 37763796. CrossRef
Wang, N.T. and Fogelson, A.L., Computational methods for continuum models of platelet aggregation. J. Comput. Phys. 151 (1999) 649675. CrossRef