Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T05:26:17.762Z Has data issue: false hasContentIssue false

A uniformly controllable and implicit scheme for the 1-D wave equation

Published online by Cambridge University Press:  15 April 2005

Arnaud Münch*
Affiliation:
Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, UFR de Sciences et Techniques, Université de Franche-Comté, 16, route de Gray 25030, Besançon cedex, France. arnaud.munch@math.univ-fcomte.fr
Get access

Abstract

This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters h and Δt. We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order h2 and Δt2. Using a discrete version of Ingham's inequality for nonharmonic Fourier series and spectral properties of the scheme, we show that the associated control can be chosen uniformly bounded in L2(0,T) and in such a way that it converges to the HUM control of the continuous wave, i.e. the minimal L2-norm control. The results are illustrated with several numerical experiments.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asch, M. and Lebeau, G., Geometrical aspects of exact boundary controllability for the wave equation: a numerical study. COCV 3 (1998) 163212. CrossRef
H.T. Banks, K. Ito and Y. Wang, Exponentially stable approximations of weakly damped wave equations. Ser. Num. Math., Birkhäuser 100 (1990) 1–33.
F. Bourquin, Numerical methods for the control of flexible structures. J. Struct. Control 8 (2001).
C. Castro and S. Micu, Boundary controllability of a semi-discrete linear 1-D wave equation with mixed finite elements. SIAM J. Numer. Anal., submitted.
C. Castro, S. Micu and A. Münch, Boundary controllability of a semi-discrete linear 2-D wave equation with mixed finite elements, submitted.
Charpentier, I. and Maday, Y., Identification numérique de contrôles distribués pour l'équation des ondes. C.R. Acad. Sci. Paris Sér. I 322 (1996) 779784.
G.C. Cohen, Higher-order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer (2002).
Glowinski, R., Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103 (1992) 189221. CrossRef
Glowinski, R., Li, C.H. and Lions, J.-L., A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet Controls: Description of the numerical methods. Japan J. Appl. Math. 7 (1990) 176. CrossRef
Glowinski, R., Kinton, W. and Wheeler, M.F., A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Engrg. 27 (1989) 623636. CrossRef
G.H. Golub and C. Van Loan, Matrix Computations. Johns Hopkins Press, Baltimore (1989).
Infante, J.A. and Zuazua, E., Boundary observability for the space-discretizations of the 1-D wave equation. ESAIM: M2AN 33 (1999) 407438. CrossRef
Ingham, A.E., Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367369. CrossRef
V. Komornik, Exact controllability and Stabilization - The multiplier method. J. Wiley and Masson (1994).
Krenk, S., Dispersion-corrected explicit integration of the wave equation. Comp. Methods Appl. Mech. Engrg. 191 (2001) 975987. CrossRef
J.L. Lions, Contrôlabilité exacte – Pertubations et stabilisation de systèmes distribués, Tome 1, Masson, Paris (1988).
Micu, S., Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91 (2002) 723728. CrossRef
Münch, A., Family of implicit schemes uniformly controllable for the 1-D wave equation. C.R. Acad. Sci. Paris Sér. I 339 (2004) 733738. CrossRef
A. Münch and A.F. Pazoto, Uniform stabilization of a numerical approximation of a locally damped wave equation. ESAIM: COCV, submitted.
Negreanu, M. and Zuazua, E., Uniform boundary controllability of a discrete 1-D wave equation. Systems Control Lett. 48 (2003) 261280. CrossRef
Negreanu, M. and Zuazua, E., Discrete Ingham inequalities and applications. C.R. Acad. Sci. Paris Sér. I 338 (2004) 281286. CrossRef
M. Negreanu and E. Zuazua, Convergence of a multi-grid method for the controlabillity of the 1-D wave equation. C.R. Acad. Sci. Paris, Sér. I 338 (2004) 413–418.
P.A. Raviart and J.M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983).
Russell, D.L., Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639737. CrossRef
J.M. Urquiza, Contrôle d'équations des ondes linéaires et quasilinéaires. Ph.D. Thesis Université de Paris VI (2000).
Zuazua, E., Boundary observability for finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures. Appl. 78 (1999) 523563. CrossRef