Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-08T06:23:18.423Z Has data issue: false hasContentIssue false

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

Published online by Cambridge University Press:  21 June 2006

Emmanuel Creusé
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, MACS, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9, France. Emmanuel.Creuse@univ-valenciennes.fr; Serge.Nicaise@univ-valenciennes.fr
Serge Nicaise
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, MACS, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9, France. Emmanuel.Creuse@univ-valenciennes.fr; Serge.Nicaise@univ-valenciennes.fr
Get access

Abstract

In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P. Anselone, Collectively compact operator approximation theory. Prentice Hall (1971).
Apel, T. and Nicaise, S., The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Method. Appl. Sci. 21 (1998) 519549. 3.0.CO;2-R>CrossRef
P. Arbenz and R. Geus, Eigenvalue solvers for electromagnetic fields in cavities, in High performance scientific and engineering computing, H.-J. Bungartz, F. Durst, and C. Zenger, Eds., Lect. Notes Comput. Sc., Springer, Berlin 8(1999).
Arnold, D.G., Brezzi, F., Cockburn, B. and Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 17491779. CrossRef
Assous, F., Ciarlet, P. and Sonnendrücker, E., Characterization of the singular part of the solution of Maxwell's equations in a polyhedral domain. RAIRO Modél. Math. Anal. Numér. 32 (1998) 485499.
Birman, M. and Solomyak, M., L 2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 7596. CrossRef
Boffi, D., Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229246. CrossRef
Boffi, D., Demkowicz, L. and Costabel, M., Discrete compactness for p and hp 2d edge finite elements. Math. Mod. Meth. Appl. S. 13 (2003) 16731687. CrossRef
D. Boffi, M. Costabel, M. Dauge and L. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements. ICES Report 04-29, University of Texas, Austin (2004).
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, New York (1991).
F. Chatelin, Spectral approximation of linear operators. Academic Press, New York (1983).
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
Costabel, M. and Dauge, M., Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221276. CrossRef
M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Technical report, University of Rennes 1. http://perso.univ-rennes1.fr/monique.dauge/core/index.html
Demkowicz, L., Monk, P., Schwab, C. and Vardepetyan, L., Maxwell eigenvalues and discrete compactness in two dimensions. Comput. Math. Appl. 40 (2000) 589605. CrossRef
Hazard, C. and Lenoir, M., On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 15971630. CrossRef
Hesthaven, J. and Warburton, T., High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. T. Roy. Soc. A 362 (2004) 493524. CrossRef
Hiptmair, R., Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237339. CrossRef
Houston, P., Perugia, I., Schneebeli, D. and Schötzau, D., Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485518. CrossRef
Houston, P., Perugia, I. and Schötzau, D., Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 315346. CrossRef
Kikuchi, F., On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. U. Tokyo IA 36 (1989) 479490.
Krizek, M. and Neittaanmaki, P., On the validity of Friedrichs' inequalities. Math. Scand. 54 (1984) 1726.
R. Leis, Initial boundary value problems in Mathematical Physics. John Wiley, New York (1988).
S. Lohrengel and S. Nicaise, A discontinuous Galerkin method on refined meshes for the 2d time-harmonic Maxwell equations in composite materials. Preprint Macs, University of Valenciennes, 2004. J. Comput. Appl. Math. (to appear).
P. Monk, Finite element methods for Maxwell's equations. Numer. Math. Scientific Comp., Oxford Univ. Press, New York (2003).
Monk, P. and Demkowicz, L., Discrete compactness and the approximation of Maxwell's equations in $\mathbb{R}^3$ . Math. Comp. 70 (2000) 507523. CrossRef
Osborn, J., Spectral approximation for compact operators. Math. Comp. 29 (1975) 712725. CrossRef