Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T13:29:48.306Z Has data issue: false hasContentIssue false

Variational Analysis for the Black and Scholes Equation with Stochastic Volatility

Published online by Cambridge University Press:  15 August 2002

Yves Achdou
Affiliation:
UFR Mathématiques, Université Paris 7, 2 Place Jussieu, 75252 Paris cedex 5, France. Laboratoire d'Analyse Numérique, Université Paris 6. achdou@math.jussieu.fr.
Nicoletta Tchou
Affiliation:
IRMAR, Université de Rennes 1, Rennes, France.
Get access

Abstract

We propose a variational analysis for a Black and Scholes equation with stochastic volatility. This equation gives the price of a European option as a function of the time, of the price of the underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum principle and additional regularity properties. Finally, we make numerical simulations of the solution, by finite element and finite difference methods.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Y. Achdou and B. Franchi (in preparation).
H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Masson (1983).
T. Cazenave and A. Haraux, An introduction to semilinear evolution equations. The Clarendon Press Oxford University Press, New York (1998). Translated from the 1990 French original by Y. Martel and revised by the authors.
Douglas, J. and Russell, T.F., Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element methods or finite difference method. SIAM J. Numer. Anal. 19 (1982) 871-885. CrossRef
J.-P. Fouque, G. Papanicolaou and K. Ronnie Sircar. Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge (2000).
Franchi, B., Serapioni, R. and Serra Cassano, F.. Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22 (1996) 859-890.
Franchi, B. and Tesi, M.C., A finite element approximation for a class of degenerate elliptic equations. Math. Comp. 69 (2000) 41-63. CrossRef
Friedrichs, K.O., The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc. 55 (1944) 132-151. CrossRef
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. I and II. Dunod, Paris (1968).
A. Pazy, Semi-groups of linear operators and applications to partial differential equations. Appl. Math. Sci.. 44, Springer Verlag (1983).
O. Pironneau and F. Hecht, FREEFEM. www.ann.jussieu.fr
Pironneau, O. and Hecht, F., Mesh adaption for the Black and Scholes equations. East-West J. Numer. Math. 8 (2000) 25-35.
M.H. Protter and H.F. Weinberger, Maximum principles in differential equations. Springer-Verlag, New York (1984). Corrected reprint of the 1967 original.
Stein, E. and Stein, J., Stock price distributions with stochastic volatility: an analytic approach. The review of financial studies 4 (1991) 727-752. CrossRef
Van Der Vorst, H.A, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonlinear systems. SIAM J. Sci. Statist. Comput. 13 (1992) 631-644. CrossRef
P. Willmott, J. Dewynne and J. Howison, Option pricing: mathematical models and computations. Oxford financial press (1993).