Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T18:34:37.715Z Has data issue: false hasContentIssue false

Bubbles and Superbubbles in Disk Galaxies

Published online by Cambridge University Press:  17 September 2012

N.M. McClure-Griffiths*
Affiliation:
CSIRO Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia
Get access

Abstract

Bubbles and Superbubbles are among the largest and most energetic structures in the Interstellar Medium (ISM). It is thought that most bubbles are formed from the combined effects of stellar winds and supernovae, which plow through the ISM, sweeping up matter in to dense atomic hydrogen (H i) shell walls and heating and ionising the gas left behind. Although this explanation works clearly for some of the smaller objects, it is hard to understand how many superbubbles apparently require hundreds to thousands of massive stars to explain their sizes. In some galaxies, like the Large Magellanic Cloud, the H i structure of the disk is dominated by H i shells. Similarly, the ISM of the Milky Way is riddled with tens, perhaps hundreds, of H i shells. In the Milky Way, as well as in the nearest disk galaxies, there is clear evidence of superbubbles that have grown so large as to break out of the disk. It would seem, then, that not only do these objects have a significant impact on the disk, they provide an invaluable source of energy for the halo. In this review I present some of the latest results on bubbles and superbubbles in disk galaxies and their relationship to the halo.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boomsma, R., Oosterloo, T.A., Fraternali, F., van der Hulst, J.M., & Sancisi, R., 2008, A&A, 490, 555
Bregman, J.N., 1980, ApJ, 236, 577CrossRef
Callaway, M.B., Savage, B.D., Benjamin, R.A., Haffner, L.M., & Tufte, S.L., 2000, ApJ, 532, 943CrossRef
Chu, Y.-H., & Mac Low, M.-M., 1990, ApJ, 365, 510CrossRef
Churchwell, E., Povich, M.S., Allen, D., et al., 2006, ApJ, 649, 759CrossRef
Churchwell, E., Watson, D.F., Povich, M.S., et al., 2007, ApJ, 670, 428CrossRef
de Avillez, M.A., & Berry, D.L., 2001, MNRAS, 328, 708CrossRef
de Avillez, M.A., & Breitschwerdt, D., 2005, A&A, 436, 585
Ford, H.A., McClure-Griffiths, N.M., Lockman, F.J., et al., 2008, ApJ, 688, 290CrossRef
Giacani, E., & Dubner, G., 2004, A&A, 413, 225
Howk, J.C., & Savage, B.D., 2000, AJ, 119, 644CrossRef
Kim, S., Dopita, M.A., Staveley-Smith, L., & Bessell, M.S., 1999, AJ, 118, 2797CrossRef
Lockman, F.J., 2002, ApJ, 580, L47CrossRef
Loeb, A., & Perna, R., 1998, ApJ, 503, L35CrossRef
McClure-Griffiths, N.M., Dickey, J.M., Gaensler, B.M., & Green, A.J., 2002, ApJ, 578, 176CrossRef
McClure-Griffiths, N.M., Dickey, J.M., Gaensler, B.M., & Green, A.J., 2003, ApJ, 594, 833CrossRef
McClure-Griffiths, N.M., Ford, A., Pisano, D.J., et al., 2006, ApJ, 638, 196CrossRef
Norman, C.A., & Ikeuchi, S., 1989, ApJ, 345, 372CrossRef
Pidopryhora, Y., Lockman, F.J., & Shields, J.C., 2007, ApJ, 656, 928CrossRef
Spangler, S.R., 2001, Space Science Reviews, 99, 261CrossRef
Tenorio-Tagle, G., & Bodenheimer, P., 1988, ARA&A, 26, 145CrossRef
Tenorio-Tagle, G., Bodenheimer, P., Rozyczka, M., & Franco, J., 1986, A&A, 170, 107
Thompson, T.W.J., Howk, J.C., & Savage, B.D., 2004, AJ, 128, 662CrossRef
Wada, K., Spaans, M., & Kim, S., 2000, ApJ, 540, 797CrossRef
Walter, F., Brinks, E., de Blok, W.J.G., et al., 2008, AJ, 136, 2563CrossRef
West, J.L., English, J., Normandeau, M., & Landecker, T.L., 2007, ApJ, 656, 914CrossRef