Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-06T13:18:24.614Z Has data issue: false hasContentIssue false

On the stability of planets in the habitable zone of inclined multi-planet systems

Published online by Cambridge University Press:  19 April 2010

E. Pilat-Lohinger*
Affiliation:
Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
Get access

Abstract

Recently the multi-planet system OGLE-06-109L has been discovered, where the two planets show similarities with the Jupiter-Saturn configuration of our Solar System. The orbital parameters of this new system indicate a high inclination for the outer planet. In this parameter study we show the stability of the two planets for different relative inclinations and semi-major axes of the two planets. Using the errors in semi-major axes given by the observations, the best result concerning dynamical stability has been obtained when planet b is at 2.1 AU and planet c at 5.1 AU. The worst result has been found for the closest configuration, when planet b is at 2.5 AU and planet c at 4.1 AU. The second part of this study examines the stability of test planets in the so-called habitable zone (HZ). This is the region around a star where liquid water is stable on the surface of an Earth-like planet. The stability of test-planets in the HZ is shown for different relative inclinations (up to 50°) of the two giant planets in OGLE-06-109L system and then compared to the results of a similar study in the Jupiter-Saturn system. For high relative inclinations we observe strong perturbations in the HZ in both results, which is probably caused by the Kozai resonance. In the OGLE-06-109L system we also observe secular perturbations for low inclinations around 0.3 AU. For certain mutual inclinations of the two giant planets we have found nearly circular planetary motion in the HZ.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiang, E.I., Tabachnik, S., & Tremaine, S., 2001, AJ, 122, 1607 CrossRef
Froeschlé, C., Lega, E., & Gonczi, R., 1997, Celest. Mech. Dyn. Astr., 67, 41 CrossRef
Gaudi, S., Bennett, D., Udalski, A., Gould, A. and 63 co-authors, 2008, Science, 319, 927 CrossRef
Kasting, J.F., Whitmire, D.P., & Reynolds, R.T., 1993, Icarus, 101, 108 CrossRef
Libert, A.-S., & Henrard, J., 2007, Icarus, 191, 469 CrossRef
Libert, A.-S., & Tsiganis, K., 2009, A&A, 493, 677
Malhotra, R., & Minton, D.A., 2008, ApJ, 683, L67 CrossRef
Migaszewski, C., Goździewski, K., & Hinse, T.C., 2009, MNRAS, 395, 1204 CrossRef
Migaszewski, C., & Goździewski, K., 2009, MNRAS, 395, 1777 CrossRef
Pilat-Lohinger, E., Süli, Á., Robutel, P., & Freistetter, F., 2008a, ApJ, 681, 1639 CrossRef
Pilat-Lohinger, E., Robutel, P., Süli, Á., & Freistetter, F., 2008b, Celest. Mech. Dyn. Astr., 102, 83 CrossRef
Sándor, Zs., Süli, Á., Érdi, B., Pilat-Lohinger, E., & Dvorak, R., 2007, MNRAS, 375, 1495 CrossRef
Stepinski, T., Malhotra, R., & Black, D., 2000, ApJ, 545, 1044 CrossRef
Thommes, E.W., & Lissauer, J.J., 2003, ApJ, 597, 566 CrossRef
Veras, D., & Armitage, P.J., 2004, Icarus, 172, 349 CrossRef
Wang, S., Zhao, G., & Zhou, J.-L., 2009, ApJ, 706, 772 CrossRef