Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T11:28:06.351Z Has data issue: false hasContentIssue false

PIERNIK MHD code – a multi–fluid, non–ideal extension of the relaxing–TVD scheme (IV)

Published online by Cambridge University Press:  17 September 2012

M. Hanasz
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Toruń, Poland. e-mail: mhanasz@astri.uni.torun.pl;
K. Kowalik
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Toruń, Poland. e-mail: mhanasz@astri.uni.torun.pl;
D. Wóltański
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Toruń, Poland. e-mail: mhanasz@astri.uni.torun.pl;
R. Pawłaszek
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Toruń, Poland. e-mail: mhanasz@astri.uni.torun.pl;
Get access

Abstract

We present a new multi–fluid, grid MHD code PIERNIK, which is based on the Relaxing TVD scheme (Jin & Xin 1995). The original scheme (see Trac & Pen 2003; Pen 2003) has been extended by an addition of dynamically independent, but interacting fluids: dust and a diffusive cosmic ray gas, described within the fluid approximation, with an option to add other fluids in an easy way. The code has been equipped with shearing–box boundary conditions, and a selfgravity module, Ohmic resistivity module, as well as other facilities which are useful in astrophysical fluid–dynamical simulations. The code is parallelized by means of the MPI library. In this paper we present an extension of PIERNIK, which is designed for simulations of diffusive propagation of the Cosmic–Ray (CR) component in the magnetized ISM.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berezinskii, V.S., Bulanov, S.V., Dogiel, V.A., & Ptuskin, V.S., 1990, ed. V.L., Ginzburg, Astrophysics of cosmic rays (Amsterdam: North-Holland)Google Scholar
Hanasz, M., & Lesch, H., 2003, A&A, 412, 331
Hanasz, M., Kowal, G., Otmianowska-Mazur, K., & Lesch, H., 2004, ApJ, 605, L33CrossRef
Hanasz, M., Otmianowska-Mazur, K., Lesch, H., et al., 2009a, ed. K.G. Strassmeier et al., Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, Proceedings IAU Symposium No. 259, submitted [arXiv:0901.0111]Google Scholar
Hanasz, M., Wóltański, D., Kowalik, K., & Pawłaszek, R., 2009b, ed. K.G. Strassmeier et al., Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, Proceedings IAU Symposium No. 259, submitted [arXiv:0901.0116]Google Scholar
Hanasz, M., Kowalik, K., Wóltański, D., & Pawłaszek, R., 2010a, EAS Publications Series, 42, 275CrossRef
Hanasz, M., Kowalik, K., Wóltański, D., Pawłaszek, R., & Kornet, K., 2010b, EAS Publications Series, 42, 281CrossRef
Hanasz, M., Kowalik, K., Wóltański, D., & Pawłaszek, R., 2012, EAS Publications Series, 56, 363CrossRef
Jin, S., & Xin, Z., 1995, Comm. Pure Appl. Math., 48, 235CrossRef
Parker, E.N., 1992, ApJ, 401, 137CrossRef
Pen, U.-L., Arras, P., & Wong, S., 2003, ApJS, 149, 447CrossRef
Ryu, D., Kim, J., Hong, S.S., & Jones, T.W., 2003, ApJ, 589, 338CrossRef
Schlickeiser, R., & Lerche, I., 1985, A&A, 151, 151
Trac, H., & Pen, U.-L., 2003, Publ. Astron. Soc. Pac., 115, 303CrossRef