Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-15T18:21:20.098Z Has data issue: false hasContentIssue false

Cosmological Radiative Transfer and the Line-of-Sight Proximity Effect

Published online by Cambridge University Press:  20 January 2011

A. M. Partl
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
A. Dall’Aglio
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
V. Müller
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
G. Hensler
Affiliation:
Institute of Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
Get access

Abstract

We study the proximity effect around high redshift quasars in dependence on the quasar redshift and environment using 3D continuum radiative transfer simulations. Snapshots of dark matter only simulations at redshift 3, 4, and 4.9 are mapped to hydrogen densities and temperatures using an effective equation of state. The overionization zone around QSOs with luminosities LνHI = 1031and1032   ergHz-1s-1 is studied in a UV background field in radiation equilibrium. By analyzing synthetic spectra of lines of sight originating at the QSO, the proximity effect is studied. We find that the quasar spectral energy distribution, diffusion and shadowing due to Lyman Limit systems play a role in the signal. Density inhomogeneities around the QSO are responsible for a large scatter around the mean proximity effect seen in all simulated QSO spectra. This scatter is larger than the differences arising from varying quasar host environments.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Bajtlik, S., Duncan, R.C., & Ostriker, J.P., 1988, ApJ, 327, 570 CrossRef
Becker, G.D., Rauch, M., & Sargent, W.L.W., 2007, ApJ, 662, 72 CrossRef
Dall’Aglio, A., Wisotzki, L., & Worseck, G., 2008, A&A, 480, 359
Guimarães, R., Petitjean, P., Rollinde, E., et al., 2007, MNRAS, 377, 657 CrossRef
Hui, L., & Gnedin, N.Y., 1997, MNRAS, 292, 27 CrossRef
Kim, T.-S., Bolton, J.S., Viel, M., Haehnelt, M.G., & Carswell, R.F., 2007, MNRAS, 382, 1657 CrossRef
Liske, J., & Williger, G.M., 2001, MNRAS, 328, 653 CrossRef
Loeb, A., & Eisenstein, D.J., 1995, ApJ, 448, 17 CrossRef
Maselli, A., Ferrara, A., & Ciardi, B., 2003, MNRAS, 345, 379 CrossRef
Rollinde, E., Srianand, R., Theuns, T., Petitjean, P., & Chand, H., 2005, MNRAS, 361, 1015 CrossRef
Scott, J., Bechtold, J., Dobrzycki, A., & Kulkarni, V.P., 2000, ApJS, 130, 67 CrossRef
Trammell, G.B., Van den Berk, D.E., Schneider, D.P., et al., 2007, AJ, 133, 1780 CrossRef