Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T08:31:40.006Z Has data issue: false hasContentIssue false

Temporal Decomposition Studies of GRB Lightcurves

Published online by Cambridge University Press:  22 July 2013

N.P. Bhat*
Affiliation:
University of Alabama in Huntsville, 301 Sparkman Dr. Huntsville 35899, AL, USA
Get access

Abstract

Gamma-ray bursts (GRB) are extremely energetic events and produce highly diverse light curves. Light curves are believed to be resulting from internal shocks reflecting the activities of the GRB central engine. Hence their temporal studies can potentially lead to the understanding of the GRB central engine and its evolution. The light curve variability time scale is an interesting parameter which most models attribute to a physical origin e.g., central engine activity, clumpy circum-burst medium, or relativistic turbulence. We develop a statistical method to estimate the GRB minimum variability time scale (MVT) for long and short GRBs detected by GBM. We find that the MVT of short bursts is distinctly shorter than that for long GRBs supporting the possibility of a more compact central engine of the former. We find that MVT estimated by this method is consistent with the shortest rise time of the fitted pulses. Hence we use the fitted pulse rise times to study the evolution of burst variability time scale. Variability time is in turn related to the minimum bulk Lorentz factor. Using this we relate the GRB spectral evolution to the evolution of the variability time scale.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, A.A., Ackerman, M., Ajello, M., et al., 2009, Nature, 462, 331 CrossRef
Ackerman, M., Asano, K., Atwood, W.B., et al., 2010, ApJ, 716, 1178 CrossRef
Aoi, J., Murase, K., Takahashi, K., Ioka, K., & Nagataki, S., 2010, ApJ, 722, 440 CrossRef
Bhat, P.N., Briggs, M.S., Connaughton, V., et al., 2012, ApJ, 744, 141 CrossRef
Granot, J., Cohen-Tanuji, J., & do Couto e Silva, E., 2008, ApJ, 677, 92 CrossRef
Hascoët, R., Daigne, F., Mochkovitch, R., et al., 2012, MNRAS, 421, 525
Kouveliotou, C., Meegan, C.A., Fishman, G.J., et al., 1993, ApJ, 413, L101 CrossRef
Lei, W.H., Wang, D.X., Gong, B.P., et al., 2007, A&A, 468, 563
Lithwick, Y., & Sari, R., 2001, ApJ, 555, 540 CrossRef
Lu, Y., Huang, Y.F., & Zhang, S.N., 2008, ApJ, 684, 1330 CrossRef
MacLachlan, G.A., Shenoy, A., Sonbas, E., et al., 2012, MNRAS, 425, L32 CrossRef
Norris, J.P., Bonnell, J.T., Kazanas, D., et al., 2005, ApJ, 627, 324 CrossRef
Razzaque, S., Mészáros, P., & Zhang, B., 2004, ApJ, 613, 1072 CrossRef
Rees, M.J., & Mészáros, P., 1994, ApJ, 430, L93 CrossRef
Sari, R., & Piran, T., 1997, ApJ, 485, 270 CrossRef