Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T18:57:43.187Z Has data issue: false hasContentIssue false

UV-irradiated hydrogenated amorphous carbons (HACs) as carriers of the interstellar UV bump

Published online by Cambridge University Press:  13 February 2013

K.A.K. Gadallah
Affiliation:
Astronomy Dpt., Faculty of Science, Al-Azhar University, Nasr City, PO Box, 11884 Cairo, Egypt;. e-mail: kamel.gadallah71@gmail.com Astrophysical Institute and University Observatory, FSU, Schillergässchen 2/3, 07743 Jena, Germany
H. Mutschke
Affiliation:
Astrophysical Institute and University Observatory, FSU, Schillergässchen 2/3, 07743 Jena, Germany
C. Jäger
Affiliation:
Institute of Solid State Physics, Friedrich Schiller University, Helmholtzweg 3, 07743 Jena, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrogenated amorphous carbons (HACs) are considered as laboratory analogues to cosmic carbonaceous nanoparticles in the interstellar medium (ISM). The optical properties of nano-sized HACs may be influenced by the UV processing. The variation of the internal structure leads to dramatic changes in the spectral properties in the FUV-VIS range. This scenario can explain some astronomical features such as the interstellar UV bump at 4.6 μm-1. The spectrum of HACs, irradiated by a dose of UV irradiation that corresponds to 21–33% of the average dose of the UV radiation in diffuse ISM, exhibits a new band centered at 4.6 μm-1. This result confirms, for the first time, the suggestion by Mennella et al. (1996) that irradiated HACs might be considered as the carriers of the interstellar UV bump at 4.6 μm-1. However, the amount of carbon needed to reproduce this band is higher than that available for interstellar carbon dust grains. So the ideal structure of irradiated HACs that would produce a band of sufficient strength has still to be searched for.

Type
Research Article
Copyright
© The Author(s) 2013

References

Références

Allamandola, L.J., Tielens, A.G.G.M., & Barker, J.R., 1989, ApJS, 71 , 733 CrossRef
Cardelli, J.A., Clayton, G.C., & Mathis, J.S., 1989, ApJ, 345 , 245 CrossRef
Chhowalla, M., Wang, H., Sano, N., Teo, K.B., Lee, S.B., & Amaratunga, G.A., 2003, Phys. Rev. Lett., 90 , 155504 CrossRef
Draine, B.T., & Lee, H.M., 1984, ApJ, 285 , 89 CrossRef
Duley, W.W., & Seahra, S., 1998, ApJ, 507 , 874 CrossRef
Fitzpatrick, E.L., 1999, PASP, 111 , 63 CrossRef
Fitzpatrick, E.L., & Massa, D., 1990, ApJS, 72 , 163 CrossRef
Fitzpatrick, E.L., & Massa, D., 2007, ApJ, 663 , 320 CrossRef
Iida, Y., & Yeung, E.S., 1994, Appl. Spectrosc., 48 , 945 CrossRef
Jäger, C., Mutschke, H., Henning, T., & Huisken, F., 2008, ApJ, 689 , 249 CrossRef
Jenniskens, P., 1993, A&A, 274 , 653
Llamas-Jansa, I., Jger, C., Mutschke, H., & Henning, T., 2007, Carbon, 45 , 1542 CrossRef
Mennella, V., Brucato, J.R., Colangeli, L., & Palumbo, P., 1999, ApJ, 524 , L71 CrossRef
Mennella, V., Brucato, J.R., Colangeli, L., & Palumbo, P., 2002, ApJ, 569 , 531 CrossRef
Mennella, V., Colangeli, L., Bussoletti, E., Palumbo, P., & Rotundi, A., 1998, ApJ, 507 , L177 CrossRef
Mennella, V., Colangeli, L., Palumbo, P., Rotundi, A., Schutte, W., & Bussoletti, E., 1996, ApJ, 464 , L191 CrossRef
Ogmen, M., & Duley, W.W., 1988, ApJ, 334 , L117 CrossRef
Schnaiter, M., Mutschke, H., Dorschner, J., Henning, T., & Salama, F., 1998, ApJ, 498 , 486 CrossRef
Stecher, T.P., 1965, ApJ, 142 , 1683 CrossRef
Wada, S., Kaito, C., Kimura, S., & Tokunaga, A.T., 1999, Adv. Space Res., 24 , 523 CrossRef